대한뇌혈관내수술학회 | 대한뇌혈관외과학회

SKEN-KSCVS 합동 연수강좌

일 시 | 2019년 9월 7일(토)

장소 분당서울대병원 헬스케어 혁신파크 4층 미래홀

주 최 | 대한뇌혈관내수술학회, 대한뇌혈관외과학회

주 관 | 대한신경외과학연구재단

평점 | 6점

2019 대한뇌혈관내수술학회 임원진

명예회장

직 위	성 명	소 속
명예회장	백민우	인봉의료재단 뉴고려병원

회장

직 위	성 명	소 속
회장	고준석	강동경희대학교병원

상임이사

직 위	성 명	소 속
<u></u> 총무	신승훈	차의과학대학교 분당차병원
학술	장철훈	영남대학교병원
정책	강현승	서울대학교병원
간행	김성림	가톨릭대학교 부천성모병원
보험	박석규	순천향대학교 서울병원
보임	권현조	충남대학교병원
수련교육	권순찬	울산대학교병원
재무	김영우	가톨릭대학교 의정부성모병원
인증위원장	이호국	한림대학교 강남성심병원
진료지침	임용철	아주대학교병원
대외협력	윤석만	순천향대학교 천안병원
국제교류	김대원	원광대학교병원
전산정보	조준성	단국대학교병원
회원관리	장인복	한림대학교 평촌성심병원
홍보	유승훈	울산대학교 강릉아산병원
연보 • 학회사편집	김태곤	차의과학대학교 분당차병원
다기관연구	황교준	분당제생병원
회칙개정	이형중	한양대학교병원
법제윤리	전영일	건국대학교병원
광주/전라지회	김태선	전남대학교병원
대구/경북지회	강연구	에스포항병원
대전/충청지회	조준성	단국대학교병원
부산/울산/경남지회	정진영	연세에스병원
감사	고준경	부산대학교병원
간사	정준호	연세대학교 세브란스병원

2019 대한뇌혈관내수술학회 임원진

전임회장단

직 위	성 명	소 속
초대, 제2대	백민우	인봉의료재단 뉴고려병원
제3대	김영준	단국대학교병원
제4, 5대	권도훈	울산대학교 서울아산병원
제6대	안성기(작고)	(전) 한림대학교 성심병원
제7대	신용삼	가톨릭대학교 서울성모병원
제8대	권오기	분당서울대학교병원
제9대	김범태	순천향대학교 부천병원
제10대	성재훈	가톨릭대학교 성빈센트병원

운영위원

직 위	성 명	소 속
	정영진	영남대학교병원
	박중철	울산대학교 서울이산병원
	조수희	울산대학교 강릉이산병원
	신희섭	강동경희대학교병원
학술위원회	박근영	연세대학교 세브란스병원
	이재일	부산대학교병원
	강동훈	경북대학교병원
	박상규	가톨릭대학교 인천성모병원
	최규선	한양대학교병원
수련교육위원회	오재상	순천향대학교 천안병원
	신동성	순천향대학교 부천병원
	신희섭	강동경희대학교병원
인증위원회 -	전홍준	한림대학교 강동성심병원
다 이 지 다	김소연	가톨릭관동대학교 국제성모병원
	오인호	중앙보훈병원
	안준형	한림대학교 평촌성심병원
	윤석만	순천향대학교 천안병원
	김영우	가톨릭대학교 의정부성모병원
교과서편찬위원회 김태	김태곤	차의과학대학교 분당차병원
<u> </u>	황교준	한림대학교 한강성심병원
	오재상	순천향대학교 천안병원
	정준호	연세대학교 세브란스병원
	남택균	중앙대학교병원
	박정수	전북대학교병원
국제교류위원회	신희섭	강동경희대학교병원
	이동훈	가톨릭대학교 성빈센트병원
	정영진	영남대학교병원

2019년도 대한뇌혈관외과학회 임원진

실행이사회

직위	성명	근무처
회장	김종수	성균관대학교 삼성서울병원
 부회장	고현송	충남대학교병원
 총 무	김용배	연세대학교 강남세브란스병원
학 호 호	박재찬	경북대학교병원
 간 행	김대원	원광대학교병원
기획홍보	권순찬	울산대학교병원
역사편찬	김태곤	차의과학대학교 분당차병원
교과서편찬	이상원	부산대학교병원
 정보통계	최석근	경희대학교병원
회칙개정	정승영	을지대학교병원
 보 험	이재환	연세대학교 세브란스병원
회원관리	김정은	서울대학교병원
수련교육	주성필	전남대학교병원
 국제교류	서의교	이화여자대학교 서울병원
재 무	유찬종	가천대학교 길병원
정도관리	방재승	분당서울대학교병원
 다기관임상시험	박동혁	고려대학교 안암병원
진료심의 및 법제	장철훈	영남대학교병원
정 책	박석규	순천향대학교 서울병원
의료판례	이철희	경상대학교병원
 관련학회 조정	남택균	중앙대학교병원
혈관내수술	윤석만	순천향대학교 천안병원
급성뇌경색	정진환	한양대학교 구리병원
두개저외과	장경술	가톨릭대학교 인천성모병원
방사선수술	임용철	아주대학교병원
여성분과	박문선	을지대학교병원
 뇌혈관해부연구회	최찬영	인제대학교 일산백병원
뇌혈관문합연구회	하성곤	고려대학교 안산병원
특별이사(News Letter)	이상원	부산대학교병원
특별이사 (뇌혈관수술인증의 추진위원회)	안재성	울산대학교 서울이산병원
감 사	현동근	인하대학교병원
감 사	임준섭	광주기독병원
간 사	연제영	성균관대학교 삼성서울병원

상임이사회

성명	근무처
김범태	순천향대학교 부천병원
박인성	경상대학교병원
정영균	인제대학교 부산백병원
김태선	전남대학교병원
김종수	성균관대학교 삼성서울병원
고현송	충남대학교병원
임동준	고려대학교 안산병원
박익성	가톨릭대학교 부천성모병원
안재성	울산대학교 서울이산병원
박재찬	경북대학교병원
신용삼	가톨릭대학교 서울성모병원
권오기	분당서울대학교병원
성재훈	가톨릭대학교 성빈센트병원
이재환	연세대학교 세브란스병원
김정은	서울대학교병원

전임회장단

성명	근무처
홍승철	성균관대학교 삼성서울병원
 주진양	연세대학교 강남세브란스병원
 강성돈	원광대학교병원
 김재민	한양대학교 구리병원
허필우	가톨릭대학교 의정부성모병원
오창완	분당서울대학교병원
 박현선	인하대학교병원
박인성	경상대학교병원
 정영균	인제대학교 부산백병원

명예회장단

성명	근무처
김광명	한양의대
김국기	경희의대
 김달수	가톨릭의대
 김승래	경북의대
이제혁	전남의대
한대희	서울의대
이동열	침례병원
 최병연	영남의대
권병덕	울산의대
허승곤	연세대학교 세브란스병원
 김한규	차의과학대학교 분당차병원
 나형균	가톨릭대학교 여의도성모병원

인사말

대한뇌혈관내수술학회와 대한뇌혈관외과학회 회원 여러분 안녕하십니까!

우리 모두를 힘들게 했던 한여름 폭염도 점차 지나가고 있고 모든 것이 풍성해지는 가을이 어김없이 다가오고 있습니다.

먼저 이번 2019년 대한뇌혈관내수술학회와 대한뇌혈관외과학회 합동연수강좌를함께 준비해주신 대한뇌혈관외과학회 김종수 회장님과 양 학회 이사진 여러분의노고에 깊이 감사드립니다. 뇌혈관질환을 전문적으로 다루는 대한뇌혈관외과학회와대한뇌혈관내수술학회가 서로의 경험을 공유하고 새로운 술기와 지식을 습득하는 것은 양 학회 회원들의 질적 향상뿐 아니라 아직까지도 국내에서 높은 사망률을 보이는 뇌혈관질환 관련 환자들에게 최선의 진료를 제공할 수 있는 필수적인 과정이라판단됩니다. 이번 합동연수강좌에서는 모야모야병과 두개강내 뇌혈관박리질환에대해 심도 있는 강의를 준비했고 뇌졸중분야에서 DTI의 임상적 적용에 관해 전문가를모시고 토론하는 시간을 가질 예정입니다. 아무쪼록 알차고 의미 있는 연수강좌가될 수 있기를 기대하며 양 학회 회원 간의 친교도 돈독히 할 수 있는 뜻 깊은 시간이되기를 기대합니다.

다시 한번 이번 2019 대한뇌혈관내수술학회-대한뇌혈관외과학회 합동연수강좌를 위해 수고해주신 모든 여러분들께 감사드립니다.

> 대한뇌혈관내수술학회 회장 고 준 석

인사말

친애하는 대한뇌혈관내수술학회 및 대한뇌혈관외과학회 회원 여러분!

수확을 앞둔 결실의 이 좋은 계절에 양 학회가 합동 연수강좌를 개최합니다. 올해는 대한뇌혈관내수술학회가 주최가 되어 모먀모야병 및 IC dissection을 주제로 고준석 회장님과 여러 임원들이 수고해 주셨고 알찬 연수교육이 되리라 기대합니다. 본디 대한뇌혈관외과학회에서 출발한 회원님들이 뇌혈관내수술의 새로운 지평을 열고자 대한뇌혈관내수술학회를 만드시고 발전시켜 오신 데 대해 축하의 인사를 보냅니다.

최근의 양 학회 회원들은 두 학회 모두에서 활동하시고 계신 것으로 압니다. 향후 양 학회의 발전적 통합이 이루어져서 신경외과 뇌혈관 분야 전문의의 위상이 더욱 높아지고 협력과 연대를 바탕으로 세계를 선도하는 학회로의 발전을 꿈꾸어 봅니다. 양 학회 회원 모두의 정진과 발전을 기원합니다.

대한뇌혈관외과학회 회장 김 종 수

프로그램

대한뇌혈관내수술학회 | 대한뇌혈관외과학회

SKEN-KSCVS 합동 연수강좌

일 시 | 2019년 9월 7일(토)

장 소 I 분당서울대병원 헬스케어 혁신파크 4층 미래홀

97:15-09:25 개회사 교준석 (대한뇌혈판내수술력회 위장) 김종수 (대한뇌혈판의과학회 회장) 97:25-09:30 축사 오찬은 (대한신경학과학회 이사정) 97:25-09:30 축사 오찬은 (대한신경학과학회 이사정) PS-25-09:30 축사 오찬은 (대한신경학과학회 이사정) Epidemiology and clinical course of Moyamoya disease				
Pidemiology and clinical course of Moyamoya disease Epidemiology and clinical course of Moyamoya disease Genes in Moyamoya disease: Updates information of the function of RNF213 and novel candidate gene for Moyamoya disease Diagnostic image of Moyamoya disease: Radiologic image & differential diagnosis of Moyamoya disease Coffee Break 11:00-12:15 Session II. Moyamoya Disease: Treatment Bypass strategies for Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery Surgical role in hemorrhagic Moyamoya disease Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic moyamoya disease Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic moyamoya disease Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic moyamoya disease Clinical application of DTI for stroke in the viewpoint of neurosurgery 12:15-13:10 Lunch 13:10-14:00 Special Lecture Alt: a-Z-4 (09:15-09:25	개회사		
Epidemiology and clinical course of Moyamoya disease Genes in Moyamoya disease: Updates information of the function of RNF213 and novel candidate gene for Moyamoya disease: Radiologic image & clifferential diagnosis of Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery Surgical role in hemorrhagic Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery Surgical role in hemorrhagic Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery Surgical role in hemorrhagic Moyamoya disease: Risk and incidence of complication & avoidance of complication in Moyamoya disease with hemorrhagic manifestation 12:15-13:10 Lunch 12:15-13:10 Lunch 13:10-14:00 Special Lecture Clinical application of DTI for stroke in the viewpoint of neurosurgery Arthur action of DTI for stroke in the viewpoint of neurosurgery Epidemiology and pathophysiology of intracranial dissection Clifferential Dissection: General Epidemiology and pathophysiology of intracranial dissection Diagnostic image of intracranial dissection Rater (Zalsiri Malai) 15:15-15:30 Coffee Break 15:30-17:00 Session IV. Intracranial Dissection: Treatment Arthur (Zalciri), Art	09:25-09:30	축사	오창완 (대한신경외과학회 이사장)	
Genes in Moyamoya disease: Updates information of the function of RNF213 and novel candidate gene for Moyamoya disease Diagnostic image of Moyamoya disease: Radiologic image & 218배 (언세대) 33 10:45-11:00 Coffee Break 11:00-12:15 Session II. Moyamoya Disease: Treatment Bypass strategies for Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery Surgical role in hemorrhagic Moyamoya disease Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic manifestation 12:15-13:10 Lunch 12:15-13:10 Lunch 13:10-14:00 Special Lecture Clinical application of DTI for stroke in the viewpoint of neurosurgery Ava 고준석 (경희대), 김종수 (성균만대) Clinical application of DTI for stroke in the viewpoint of neurosurgery Ava 24만 (순천항대), 김태선 (전날대) Diagnostic image of intracranial dissection Ratural course and medical treatment for intracranial dissection 15:15-15:30 Coffee Break 15:30-17:00 Session IV. Intracranial Dissection: Treatment Surgical treatment for intracranial dissection Endovascular treatment for intracranial dissection Endovascular treatment for intracranial dissection Complicated cases and panel discussion ### Ava 24 (24 (24 (24 (24 (24 (24 (24 (24 (24	09:30-10:45	Session I. Moyamoya Disease: General	좌장: 강현승 (서울대), 안재성 (울산대)
of RNF213 and novel candidate gene for Moyamoya disease Diagnostic image of Moyamoya disease: Radiotogic image & clifferential diagnosis of Moyamoya disease: Radiotogic image & clifferential diagnosis of Moyamoya disease 11:00-12:15		Epidemiology and clinical course of Moyamoya disease	김재훈 (을지대)	16
10:45-11:00 Coffee Break 11:00-12:15 Session II. Moyamoya Disease: Treatment Bypass strategies for Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery Surgical role in hemorrhagic Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery Surgical role in hemorrhagic Moyamoya disease Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic manifestation 12:15-13:10 Lunch Special Lecture Clinical application of DTI for stroke in the viewpoint of neurosurgery A35. 고조석 (경희대, 김종수 (성교관대) Epidemiology and pathophysiology of intracranial dissection Diagnostic image of intracranial dissection Ratural course and medical treatment for intracranial dissection 15:15-15:30 Coffee Break Surgical treatment for intracranial dissection Endovascular t			심규원 (연세대)	23
11:00-12:15 Session II. Moyamoya Disease: Treatment 좌장 성재훈 (가톨릭대), 고현송 (총남대) Bypass strategies for Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery Surgical role in hemorrhagic Moyamoya disease 김정은 (서울대) 38 Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic manifestation 12:15-13:10 Lunch 13:10-14:00 Special Lecture 좌장 고준석 (경희대), 김종수 (성교란대) Clinical application of DTI for stroke in the viewpoint of neurosurgery 장상호 (영남대 재활의학과) 62 14:00-15:15 Session III. Intracranial Dissection: General 좌장 윤석만 (순천량대), 김태선 (천남대) Epidemiology and pathophysiology of intracranial dissection 권오기 (서울대) 70 Diagnostic image of intracranial dissection 큐창우 (경희대 영상의학과) 71 Natural course and medical treatment for intracranial dissection 김대원 (원광대) 75 15:15-15:30 Coffee Break Surgical treatment for intracranial dissection 박자찬 (경북대) 경영균 (인제대) Endovascular treatment for intracranial dissection 박자찬 (경북대) 74 Endovascular treatment for intracranial dissection 박자찬 (경북대) 83 김성임 (가톨릭대) 86 O/재일 (부산대) 87 박중철 (옮산대) 88			김용배 (연세대)	33
Bypass strategies for Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery Surgical role in hemorrhagic Moyamoya disease Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic manifestation 12:15-13:10 Lunch Special Lecture Clinical application of DTI for stroke in the viewpoint of neurosurgery Clinical application of DTI for stroke in the viewpoint of neurosurgery APS: 고준석 (경희대), 김종수 (청교관대) Epidemiology and pathophysiology of intracranial dissection Diagnostic image of intracranial dissection Ratural course and medical treatment for intracranial dissection 15:15-15:30 Coffee Break Session IV. Intracranial Dissection: Treatment Surgical treatment for intracranial dissection Endovascular treatment for intracranial dissection Endovascular treatment for intracranial dissection Complicated cases and panel discussion ##S### URB ################################	10:45-11:00	Coffee Break		
Surgical role in hemorrhagic Moyamoya disease 김정은 (서울대) 38 Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic manifestation 12:15-13:10 Lunch 13:10-14:00 Special Lecture 좌장 고준식 (경희대). 김종수 (성교관대) Clinical application of DTI for stroke in the viewpoint of neurosurgery Clinical application of DTI for stroke in the viewpoint of neurosurgery Epidemiology and pathophysiology of intracranial dissection Epidemiology and pathophysiology of intracranial dissection Past 교육 (경희대 영상의학교) 71 Natural course and medical treatment for intracranial dissection 15:30-17:00 Session IV. Intracranial Dissection: Treatment Surgical treatment for intracranial dissection 박자찬 (경북대) 경영교 (인제대) Endovascular treatment for intracranial dissection 박자찬 (경북대) 경영교 (인제대) Complicated cases and panel discussion Infall (원광대) 83 김성림 (가톨릭대) 86 이재일 (부산대) 87 박종철 (울산대) 88	11:00-12:15	Session II. Moyamoya Disease: Treatment	좌장: 성재훈 (가톨릭대), 고현송 (충남	대)
Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic manifestation 12:15-13:10 Lunch 13:10-14:00 Special Lecture Clinical application of DTI for stroke in the viewpoint of neurosurgery Clinical application of DTI for stroke in the viewpoint of neurosurgery Avs: 교조석 (경희대), 김종수 (성교관대) 22 14:00-15:15 Session III. Intracranial Dissection: General Epidemiology and pathophysiology of intracranial dissection Diagnostic image of intracranial dissection Ratural course and medical treatment for intracranial dissection 15:15-15:30 Coffee Break Surgical treatment for intracranial dissection Surgical treatment for intracranial dissection For Avs: 신용삼 (가톨릭대), 정영균 (인제대) Surgical treatment for intracranial dissection 中재찬 (경북대) 74 Endovascular treatment for intracranial dissection What (경북대) 33 김성림 (가톨릭대) 84 17:00 Platt		complication & avoidance of complication from revascularization	연제영 (성균관대)	36
disease with hemorrhagic manifestation 12:15-13:10 Lunch 13:10-14:00 Special Lecture 좌장: 고준석 (경희대), 김종수 (성교관대) Clinical application of DTI for stroke in the viewpoint of neurosurgery 장성호 (영남대 재활의학과) 62 14:00-15:15 Session III. Intracranial Dissection: General 좌장: 윤석만 (순천항대), 김태선 (전남대) Epidemiology and pathophysiology of intracranial dissection 권오기 (서울대) 70 Diagnostic image of intracranial dissection 큐창우 (경희대 영상의학과) 71 Natural course and medical treatment for intracranial dissection 김대원 (원광대) 75 15:15-15:30 Coffee Break 15:30-17:00 Session IV. Intracranial Dissection: Treatment 좌장: 신용삼 (가톨릭대), 정영균 (인제대) Endovascular treatment for intracranial dissection 박자찬 (경북대) 74 Endovascular treatment for intracranial dissection 박소국 (부산대 영상의학과) 79 주성필 (전남대) 83 김성림 (가톨릭대) 86 이재일 (부산대) 87 박종철 (울산대) 88		Surgical role in hemorrhagic Moyamoya disease	김정은 (서울대)	38
13:10-14:00 Special Lecture 좌장: 고준석 (경희대), 김종수 (성교관대) Clinical application of DTI for stroke in the viewpoint of neurosurgery 8건호 (영남대 재활의학과) 62 14:00-15:15 Session III. Intracranial Dissection: General 좌장: 윤석만 (순천향대), 김태선 (전남대) Epidemiology and pathophysiology of intracranial dissection 권오기 (서울대) 70 Diagnostic image of intracranial dissection 류창우 (경희대 영상의학과) 71 Natural course and medical treatment for intracranial dissection 김대원 (원광대) 75 15:15-15:30 Coffee Break 15:30-17:00 Session IV. Intracranial Dissection: Treatment 좌장: 신용삼 (가톨릭대), 정영균 (인제대) Surgical treatment for intracranial dissection 박재찬 (경북대) 74 Endovascular treatment for intracranial dissection 백승국 (부산대 영상의학과) 79 주성필 (전남대) 83 김성림 (가톨릭대) 86 이재일 (부산대) 87 박중철 (울산대) 88			반승필 (서울대)	48
Clinical application of DTI for stroke in the viewpoint of neurosurgery	12:15-13:10	Lunch		
neurosurgery 경영호 (영급대 제월의학과) 62 14:00-15:15 Session III. Intracranial Dissection: General 좌장: 윤석만 (순천향대), 김태선 (전남대) Epidemiology and pathophysiology of intracranial dissection 권오기 (서울대) 70 Diagnostic image of intracranial dissection 류창우 (경희대 영상의학과) 71 Natural course and medical treatment for intracranial dissection 김대원 (원광대) 75 15:15-15:30 Coffee Break 15:30-17:00 Session IV. Intracranial Dissection: Treatment 좌장: 신용삼 (가톨릭대). 정영균 (인제대) Surgical treatment for intracranial dissection 박재찬 (경북대) 74 Endovascular treatment for intracranial dissection 백승국 (부산대 영상의학과) 79 주성필 (전남대) 83 김성림 (가톨릭대) 86 이재일 (부산대) 87 박중철 (울산대) 88	13:10-14:00	Special Lecture	좌장: 고준석 (경희대), 김종수 (성균관	대)
Epidemiology and pathophysiology of intracranial dissection 권오기 (서울대) 70 Diagnostic image of intracranial dissection 류창우 (경희대 영상의학과) 71 Natural course and medical treatment for intracranial dissection 김대원 (원광대) 75 15:15-15:30 Coffee Break 15:30-17:00 Session IV. Intracranial Dissection: Treatment 좌장: 신용삼 (기톨릭대), 정영교 (인제대) Surgical treatment for intracranial dissection 박재찬 (경북대) 74 Endovascular treatment for intracranial dissection 백승국 (부산대 영상의학과) 79 Complicated cases and panel discussion 대장일 (부산대) 83 김성림 (가톨릭대) 86 이재일 (부산대) 87 박중철 (울산대) 88			장성호 (영남대 재활의학과)	62
Diagnostic image of intracranial dissection 류창우 (경희대 영상의학과) 71 Natural course and medical treatment for intracranial dissection 김대원 (원광대) 75 15:15-15:30 Coffee Break 15:30-17:00 Session IV. Intracranial Dissection: Treatment 좌장: 신용삼 (가톨릭대), 정영균 (인제대) Surgical treatment for intracranial dissection 박재찬 (경북대) 74 Endovascular treatment for intracranial dissection 백승국 (부산대 영상의학과) 79 Complicated cases and panel discussion 대원 (기톨릭대) 86 이재일 (부산대) 87 박중철 (울산대) 88	14:00-15:15	Session III. Intracranial Dissection: General	좌장: 윤석만 (순천향대), 김태선 (전남	대)
Natural course and medical treatment for intracranial dissection 김대원 (원광대) 75 15:15-15:30 Coffee Break 15:30-17:00 Session IV. Intracranial Dissection: Treatment		Epidemiology and pathophysiology of intracranial dissection	권오기 (서울대)	70
15:15-15:30 Coffee Break 15:30-17:00 Session IV. Intracranial Dissection: Treatment 좌장: 신용삼 (가톨릭대), 정영균 (인제대) Surgical treatment for intracranial dissection 박재찬 (경북대) 74 Endovascular treatment for intracranial dissection 백승국 (부산대 영상의학과) 79 주성필 (전남대) 83 김성림 (가톨릭대) 86 이재일 (부산대) 87 박중철 (울산대) 88		Diagnostic image of intracranial dissection	류창우 (경희대 영상의학과)	71
Session IV. Intracranial Dissection: Treatment 조장: 신용삼 (가톨릭대), 정영균 (인제대)		Natural course and medical treatment for intracranial dissection	김대원 (원광대)	75
Surgical treatment for intracranial dissection	15:15-15:30	Coffee Break		_
Endovascular treatment for intracranial dissection 백승국 (부산대 영상의학과) 79 주성필 (전남대) 83 김성림 (가톨릭대) 86 이재일 (부산대) 87 박중철 (울산대) 88 17.00 페리사	15:30-17:00	Session IV. Intracranial Dissection: Treatment	좌장: 신용삼 (가톨릭대), 정영균 (인제	때)
주성필 (전남대) 83 김성림 (가톨릭대) 86 이재일 (부산대) 87 박중철 (울산대) 88 17,00 페리사 김종수 (대한뇌혈관외과학회 회장)		Surgical treatment for intracranial dissection	박재찬 (경북대)	74
Complicated cases and panel discussion 기성임 (가톨릭대) 86 이재일 (부산대) 87 박중철 (울산대) 88 17.00 메리사 17.00 기종수 (대한뇌혈관외과학회 회장)		Endovascular treatment for intracranial dissection	백승국 (부산대 영상의학과)	79
Complicated cases and panel discussion 이재일 (부산대) 87 박중철 (울산대) 88 17:00 페리사 김종수 (대한뇌혈관외과학회 회장)			주성필 (전남대)	83
이재일 (부산대) 87 박중철 (울산대) 88 17.00 메하나 기종수 (대한뇌혈관외과학회 회장)		Complicated cases and panel discussion	김성림 (가톨릭대)	86
17.00 페리나 김종수 (대한뇌혈관외과학회 회장)		Somplification custos und purior discussion	이재일 (부산대)	87
			,	88
	17:00	폐회사		

초청연자

장 성 호 영남대학교병원 재활의학과

경력

1990	연세대학교 의과대학 졸업
1998	신촌세브란스병원 재활의학과 전문의 수료
1999–2013	영남대학교 의과대학 재활의학과 교수
2013-현재	영남대학교 의과대학 재활의학과 석좌교수

수상

2007	대한 재활의학회 학술상
2009	대한 재활의학회 학술상
2009	대구광역시 의사회 학술상
2012	중앙일보 대학평가 - 의학계열 연구업적 전국 1위
2013	대한 재활의학회 학술상
2015	중앙일보 대학평가 - 논문의 질 [피인용도] 높은 연구자: 의학계열 전국 2위
2015	대한 재활의학회 신정순 학술상 제1회 수상
2017	한국 과학기술 한림원: 정회원 선정
2019	대한민국 의학한림원: 정회원 선정

초청연자

류 **창 우** 강동경희대학교병원 영상의학과

학력 및 경력

경희대학교 의과대학 졸업 경희대학교 의학과 석사 강원대학교 의학과 박사

분당차병원 전공의 수료 서울지구병원 방사선과장 서울이산병원 뇌신경방사선학 전임의 인하대학병원 뇌신경방사선학 전임의 강동경희대학교병원 영상의학과 교수 강동경희대학교병원 영상의학과 과장

학회활동

대한신경두경부영상의학회 보험이사 대한신경중재치료의학회 보험이사

초청연자

백 승 국 양산부산대학교병원 영상의학과

학력

경상대학교 의과대학 졸업 경상대학교 대학원 석사 부산대학교 대학원 박사

경력

침례병원 영상의학 과장 계명대 의과대학 조교수 경북대 의과대학 부교수 부산대 의학전문대학원 조교수 현재 부산대 의학전문대학원 부교수

대한뇌혈관내수술학회 | 대한뇌혈관외과학회 SKEN-KSCVS 합동 연수강좌

Session I. Moyamoya Disease: General

좌장: 강현승(서울대), 안재성(울산대)

1. Epidemiology and clinical course of Moyamoya disease

김재훈 (을지대)

2. Genes in Moyamoya disease: Updates information of the function of RNF213 and novel candidate gene for Moyamoya disease

심규원 (연세대)

3. Diagnostic image of Moyamoya disease: Radiologic image & differential diagnosis of Moyamoya disease 김용배 (연세대)

Epidemiology and clinical course of Moyamoya disease

김재훈

을지대

A. Definition

1. Moyamoya disease (MMD)

- Progressive stenosis and occlusion of the distal part of ICA
- Formation of a fine vascular network (moyamoya vessels)
- No etiology
- Bilateral lesions

2. Probable MMD or unilateral MMD

- Unilateral lesion

3. Quasi-MMD or MM syndrome

- Atherosclerosis, autoimmune disease, meningitis, brain neoplasm, Down's syndrome, neurofibromatosis, head trauma, cranial irradiation, sickle cell disease, hyperthyroidism

B. Epidemiology

1. Incidence (I) and prevalence (P)

```
- Korea : I = 1.0 (2008) \sim 4.3 (2013) /105-year 
 P = 6.3 (2005) \sim 18.1 (2013) /105 

- Japan : I = 0.35 (1994) \sim 1.36 (2006) /105-year 
 P = 3.16 (1994) \sim 10.5 (2002-2006) /105 

- China : I = 0.43 (2000-2007) \sim /105 -year 
 P = 3.92 (2000-2007) \sim /105 

- Taiwan : I = 0.048 (1978) \sim 0.2 (2011) /105-year
```

P = 1.61(2011)/105

- USA: $I = 0.05 (1973-1997) \sim 0.17 (1987-1996) / 105-year$
- Europe : $I = 0.03 (1996) \sim 0.047 (1994-2015) / 105$ -year

2. Gender differences (Female to Male ratio)

- Korea : $1.4 (2010) \sim 1.9 (2004-2008)$
- Japan : $1.8 (1994) \sim 2.2 (2002-2006)$
- China : $0.9 (2002-2010) \sim 1.1 (2000-2007)$
- Taiwan: 1.1 (2000-2005) \sim 1.7 (2006-2011)
- USA: $2.5 \sim 8$
- Europe: 2.1 (1994-2015) ~ 4.2 (1996-2007)
- Explanations: Difference in coagulation and fibrinolytic pathways, the effect of estrogen on the endothelium and surrounding connective tissue, X-linked genetic differences, methylation patterns

3. Age distribution (years)

- Korea: 2 peaks (5-15 vs. 45-54)
- Japan : 2 peaks (5-9 vs. 45-49)
- China: 2 peaks (5-9 vs. 35-45)
- Taiwan: 2 peaks (5-14 vs. 40-44)
- USA: 2 peaks (5-9 vs. 55-59)
- Europe : 2 peaks (0-9 vs. 30-39)

4. Familial MMD

- Autosomal dominant inheritance with incomplete penetration
- Familial occurrence: 10-15% (East Asian), 2% (USA), 1.3-7.1% (Europe)
- Early onset of symptom
- Higher Female to male ratio

5. Explanations for the discrepancy of epidemiology

- Different survey methods (different inclusion criteria/ population based or in-hospital based)
- Different genetic or environmental factor

6. Trends

- Increase of both the incidence and prevalence because of an increase in newly diagnosed MMD and survivors
- Change of epidemiologic features

C. Clinical course

1. TIA and ischemic stroke

- Cerebral ischemia in the territory of the ICA, particularly in the frontal lobe
- Focal neurological deficit: hemiparesis, speech or sensory disturbances
- Atypical symptoms: syncope, visual symptoms, involuntary movements, intellectual or cognitive impairment
- Hyperventilation-induced ischemic attack in pediatric patients

2. Hemorrhage

- Intraventricular (IV), intraparenchymal (IP), subarachnoid hemorrhage
- IVH occurs more commonly than in hypertensive IPH
- Rupture of dilated, fragile MM vessels: persistent hemodynamic stress of the MM vessels (basal ganglia, thalamus, or periventricular region)
- Rupture of saccular aneurysms: hemodynamic stress induces the formation of a saccular aneurysm
- Rupture of dilated pial collateral arterioles

3. Headache

- Frontal or migraine-like headache
- Lower the threshold for migraine or increase spreading cortical depression
- Dilated transdural collaterals stimulate dural nociceptors

4. Seizure

- 20-30% of MMD patients
- Predictors for epilepsy: lower mRS score, diffuse brain atrophy, early seizure

5. Involuntary movement

- Usually in children (4% of pediatric patients)
- Cerebral hypoperfusion in the basal ganglia and in the relevant cerebral cortex
- dilated MM-associated collaterals in BG

6. Intellectual or cognitive impairment

- Intellectual impairment due to frontal ischemia in pediatric patients
- Cognitive dysfunction (delayed recall, visual space & executive function) in adults due to frontal, medial temporal, hippocampal ischemia
- Ongoing COSMO-JAPAN study

D. Interesting issues

1. Natural course

- 1) Kuroda (2005)
 - MMD progression: 15/63 (23.8%)
 - Mean time to progression from diagnosis: 60 months (1.5-8 years)
 - Risk factor: female
- 2) Kuroda (2007)
 - MMD progression: related to silent infarction or ischemic events
 - Annual stroke rate = 3.2% (mean FU 43.7 months)
- 3) Gross (2013)
 - 42 MMD/S patients, mean FU 2.9 years
 - Annual stroke rate = 13.3%, hemorrhage rate = 1.7%
 - Risk factors for future stroke: female, recent stroke (within 3 years)
- 4) Cho (2015)
 - 241 adults with stable hemodynamics, (mean FU 82.5 months)
 - Type: ischemia (59.8%), hemorrhage (25.7%), asymptomatic (14.5%)
 - Annual stroke rate = 4.5% (ischemic 3%, hemorrhagic 4.3%)
 - Annual stroke rate in asymptomatic patients = 3.4% (ischemic 0.8%, hemorrhagic 2.5%)
 - Worst clinical outcomes: hemorrhagic group
- 5) Kim (2017)
 - 176 patients, mean FU 83 months
 - Overall annual recurrent hemorrhage rate = 3.4%/person during 5 years

2. Unilateral MMD

- 1) Smith (2008)
 - 10/33 patients progressed to bilateral disease over 5 years
 - disease progression risk: contralateral abnormalities on initial imaging, congenital cardiac anomalies, previous cranial irradiation, Asian ethnic origin, familial MMD
- 2) Hayashi (2013)
 - Incidence = 0.23/105-year, prevalence = 0.66/105
 - Ratio of unilateral to all MMD: 10.6%

3. MMD-related aneurysm (3.4~14.8%)

- 1) Yeon (2011)
 - Prevalence = 9/249 (3.6%)
 - Posterior location: 54%
 - Increasing tendency in patients over 50 years
- 2) Zhang (2015)
 - Pathogenesis: hemodynamic stress, pathological vessel architecture
 - Type: major artery, peripheral artery (ant. & post. Choroidal artery), moyamoya vessel (lenticulostriate, thalamo-perforating artery), meningeal artery, anastomosis site
- 3) Kim (2018)
 - Prevalence = 11/132 (8.3%)
 - Rupture rate = 7/11 (63.6%)

4. Asymptomatic MMD

- 1) Ikeda (2006)
 - 8/11402 healthy (0.07%)
 - Men 0.05%, Women 0.1%
 - Mean age: men 54.8 years, women 53.3 years
 - Estimated prevalence 50.7/105
 - Family history: 62.5%
- 2) Kuroda (2007)
 - 40 asymptomatic patients (13-67 years)
 - Silent infarction: 20%, Disturbed cerebral hemodynamics: 40%
 - 7/34 conservatively treated patients: TIA (3), intracranial bleeding (3), ischemic stroke (1) 43.7 months FU
 - Annual risk for any stroke: 3.2%
 - Asymptomatic MMD: not a silent disorder and potentially cause ischemic or hemorrhagic stroke.
- 3) Jo (2014)
 - 40 (74 hemispheres) asymptomatic adult patients
 - 32 months FU: TIA 3/40
 - Angiographic 24 months FU: 3 progression, 3 new hemodynamic abnormality
 - Predictors of symptomatic progression: decreased vascular reserve capacity, smoking

- 4) Yang (2014)
 - 42 (75 hemispheres) asymptomatic adult patients (37 months FU)
 - 4 Hemisphere (5.3%) symptomatic progression (3 hemorrhage, 1 TIA)
 - 9 Hemisphere (12%) angiographic progression
 - Predictor of progression: decreased initial cerebrovascular reserve capacity
- 5) Ongoing AMORE study

5. Quasi-MMD or MM syndrome

- 1) Hayashi (2014)
 - 109 patients
 - F:M = 1.57, mean age = 30.6 years
 - Bimodal peaks, familial (7%)
 - Cause: atherosclerosis, Down syndrome, von Recklinghausen disease
 - Unilateral lesion, mild moyamoya vessels, less frequent intracranial hemorrhage
- 2) Zhao (2017)
 - 64/693 patients (9.2%)
 - Mean age: 31.5 years, unimodal age distribution
 - Cause: atherosclerosis, hyperthyroidism
 - Annual risk of stroke = 19.4%/patient

E. Future perspectives

- Epidemiology: need to perform a population-based study, especially in Westerns
- Natural history of MMD (symptomatic, asymptomatic, disease progression): multicenter prospective observational trial

F. References

Acker G: Distinct clinical and radiographic characteristics of moyamoya disease amongst European Caucasians. Eur J Neurol 2015

Ahn IM: Incidence, prevalence, and survival of moyamoya disease in Korea: a nationwide, population-based study. Stroke 2014

Baba T: Novel epidemiological features of moyamoya disease. J Neurol Neurosurg Psychiatry 2008

Bao XY: Clinical features, surgical treatment and long-term outcome in adult patients with moyamoya disease in China.

Cerebrovasc Dis 2012

Bao XY: Epidemiology of moyamoya disease in China: single-center, population-based study. World Neurosurg 2019

Birkeland P: Indicence of moyamoya disease in Denmark: a population-based register study. Acta Neurochir Suppl 2018

Chen PC: Epidemiology of moyamoya disease in Taiwan: a nationwide population-based study. Stroke 2014

Cho WS: The natural clinical course of hemodynamically stable adult moyamoya disease. J Neurosurg 2015

Gross BA: The natural history of moyamoya disease in a North American adult cohort. J Clin Neurosci 2013

Hayashi K: An epidemiological survey of moyamoya disease, unilateral moyamoya disease and quasi-moyamoya disease in Japan. Clin Neurol Neurosurg 2013

Hayashi K: A nationwide survey on unilateral moyamoya disease in Japan. Clin Neurol Neurosurg 2014

Hayashi K: National survey on quasi-moyamoya disease in Japan. Acta Neurochir 2014

Hever P: Moyamoya angiopathy – is there a Western phenotype? Br J Neurosurg 2015

Hoshino H: Epidemiological features of moyamoya disease in Japan. Neurol Med Chir (Tokyo) 2012

Ikeda K: Adult moyamoya disease in the asymptomatic Japanese population. J Clin Neurosci 2006

Jeon JP: A recent update of clinical and research topics concerning adult moyamoya disease. J Korean Neurosurg Soc 2016

Jo KI: Clinical course of asymptomatic adult moyamoya disease. Cerebrovasc Dis 2014

Kainth D: Epidemiological and clinical features of moyamoya disease in the USA. Neuroepidemiology 2013

Kim JH: Intracanial aneurysms in adult moyamoya disease. World Neurosurg 2018

Kim KM: Natural history and risk factor of recurrent hemorrhagic adult moyamoya disease. Neurosurgery 2017

Kim T: Epidemiology of moyamoya disease in Korea: based on NHIS data. J Korean Neurosurg Soc 2015

Kleinloog R: Regional differences in incidence and patient characteristics of moyamoya disease. Cerebrovasc Dis 2012

Kraemer M: Moyamoya disease in Europeans. Stroke 2008

Krischek B: Genetic and clinical characteristics of moyamoya disease in Europeans. Acta Neurochir Suppl 2011

Kuriyama S: Prevalence and clinicoepidemiological features of moyamoya disease in Japan: findings from a nationwide epidemiological survey. Stroke 2008

Kuroda S: Asymptomatic moyamoya disease: literature review and ongoing AMORE study. Neurol Med Chir (Tokyo) 2015

Kuroda S: Radiological findings, clinical course, and outcome in asymptomatic moyamoya disease: results of multicenter survery in Japan. Stroke 2007

Miao W: Epidemiological and clinical features of moyamoya disease in Nanjin, China. Clin Neurol Neurosurg 2010

Mikami T: Predictive factors for epilepsy in moyamoya disease. J Stroke Cerebrovasc Dis 2015

Sato Y: Characteristics of moyamoya disease based on National Registry Data in Japan. Stroke 2019

Savolainen M: Moyamoya angiopahty: long-term follow-up study in a Finnish population. J Neurol 2019

Shang S: Progress in moyamoya disease. Neurosurg Rev 2018

Su SH: Assessment of cognitive function in adult patients with hemorrhagic moyamoya disease who received no surgical revascularization. Eur J Neurol 2013

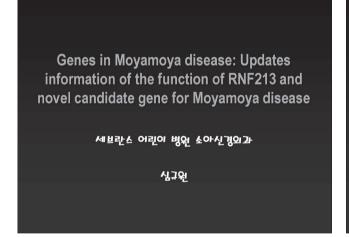
Takagi Y: Cognitive dysfunction survey of the Japanese patients with moyamoya disease [COSMO-JAPAN Study] study protocol. Neurol Med Chir (Tokyo) 2015

Weinberg DG: Moyamoya disease: functional and neurocognitive outcomes in the pediatric and adult populations. Neurosurg Focus 2011

Yang J: Clinicoepidemiological features of asymptomatic moyamoya disesase in adult patients. J Cerebrovasc Endovasc Neurosurg 2014

Yim SH: Prevalence and epidemiologic features on moyamoya disease in Korea. J Cerebrovasc Endovasc Neurosurg 2012

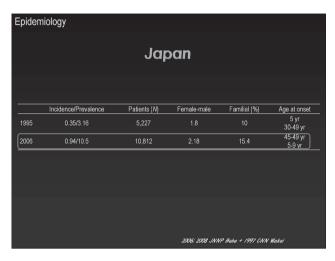
Yeon JY: Incidental major artery aneurysms in patients with non-hemorrhagic moyamoya disease. Acta Neurochir 2011

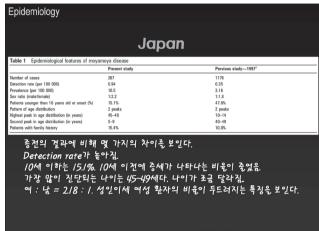

Zhang L: Treatment strategies for aneurysms associated with moyamoya disease. Int J Med Sci 2015

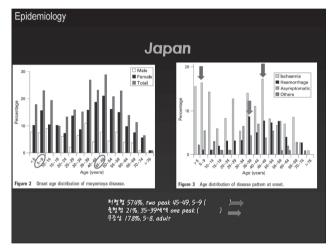
Zhao M: Clinical characteristics and natural history of Quasi-moyamoya disease. J Stroke Cerebrovasc Dis 2017

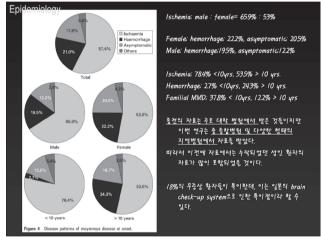
Genes in Moyamoya disease: Updates information of the function of RNF213 and novel candidate gene for Moyamoya disease

심규원

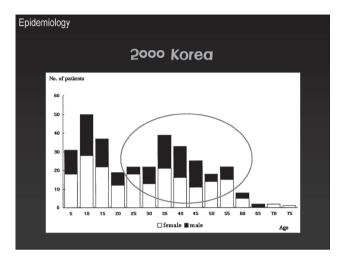

연세 대

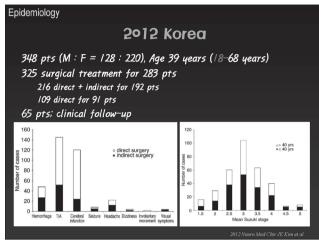




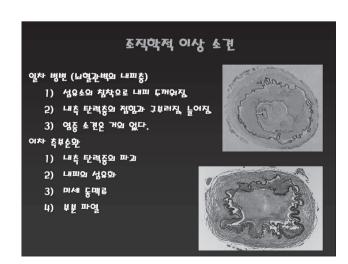

유사 모아모아병 1. 모아모아병 혈관조영술상 양측성, 원인이 없는 경우 2. 유사 모아모아병 혈관조영술상 일측성, 원인이 없는 경우 3. 모아모아 중후군 혈관조영술상 양측성, 원인이 있는 경우

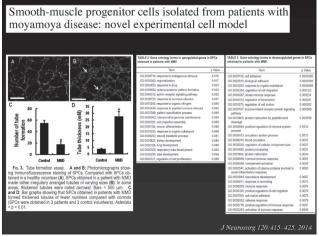
모야모야병의 역학 1. 서양 <<<< 동양 : 한국, 일본, 몽골 2. 호발 연령 1) 4 ~ b 세 (뇌어열성 증상) 2) 20대 중반 (안국) 3) <u>40대 중반 (뇌출열성<어열성 증상)</u> 3. 유전적 인자 1) 영제간 발병 가능성 : 42배 2) 후손에서의 발병 가능성 : 34배 3) 실제 가족간의 유병률 : 15~20%

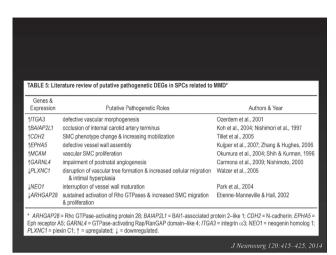


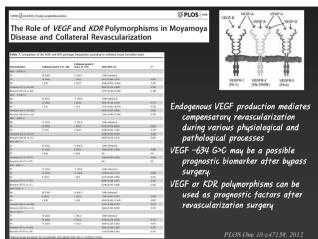


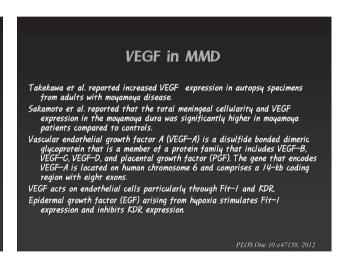
	5000 k	Korea		
Table 1. General Demographic Data of the Po	tients			
Characteristics	All patients	Adults (=>16)	Children (<16)	p-value**
Number (%)	334	213 (63.8%)	121 (36.2%)	
Age, mean ± SD, year	26.7 ± 17.1	37.1 ± 12.1	8.2 ± 3.6	
Median, year	26.5	36.1	3.6	
Sex, % of male	40.7	39.9	42.1	NS
Mode of presentation				< 0.0001
Haemorrhage, %	43.1	62.4	9.1	
Ischaemia, %	38.3	25.4	61.2	
Seizure, %	10.8	3.8	23.1	
Presenting symptoms				
Decreased level of consciousness, %	38.0	54.5	9.1	< 0.0001
Weakness, %	59	45.5	83.5	< 0.0001
Suzuki grade, mean ± SD	3.4 ± 1.1	3.4 ± 1.2	3.4 ± 0.9	NS
Favorable onset (KPS => 70), %	73.1	57.3	80.2	< 0.0001
Mode of treatment				
Bypass surgeries, %	38.1	24.4	62.0	< 0.0001
(Bilateral bypass surgery (%))*	(53.5)	(46.2)	(58.7)	NS
Outcome				
Mortality, %	3.3	4.7	0.8	< 0.0001
Favorable outcome (KPS => 70), %	73.1	70.4	77.7	0.09

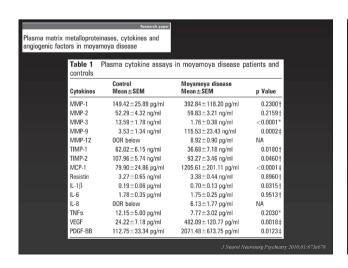

	2000 Kore	a	
Table 2. Comparisons of Clinical Characteristics B	etween Haemorrhage and Ischaemia	Group	
Characteristics	Haemorrhage	Ischaemia	p-valu
Number	144	126	
Age, mean ± SD, year	36.9 ± 13.1	19.2 ± 16.0	< 0.00
Median, year	37	12	
% of adults	92.4	42.2	< 0.00
Sex, % of male patients	35.4	44.5	NS
Presenting symptoms			
Decreased level of consciousness, %	63.2	14.8	< 0.00
Weakness, %	39.6	80.5	< 0.00
Suzuki grade, mean ± SD	3.4 ± 1.4	3.5 ± 0.9	NS
Favorable onset (KPS => 70), %	52.8	78.9	< 0.00
Mode of treatment	_	_	
Bypass surgeries, %	25.7	53.9	< 0.00
(Bilateral bypass, %)*	(43.2)	(53.6)	NS
Outcome			
Mortality, %	5.8	2.3	< 0.00
Favorable outcome (KPS => 70), %	67.4	77.3	NS

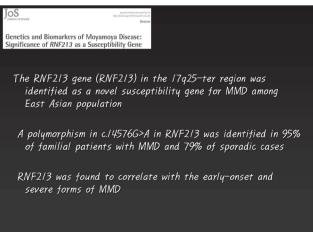


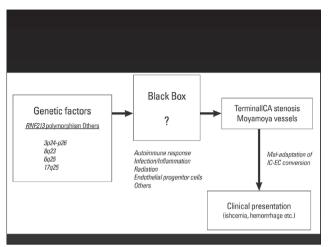


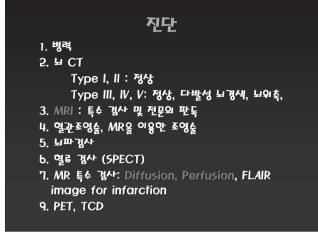


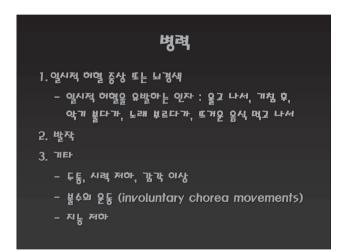


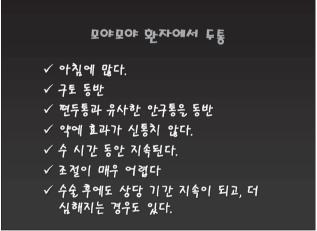


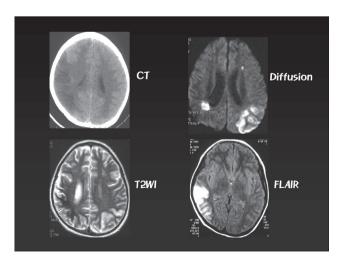


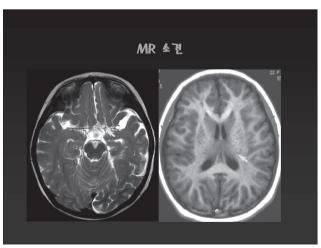


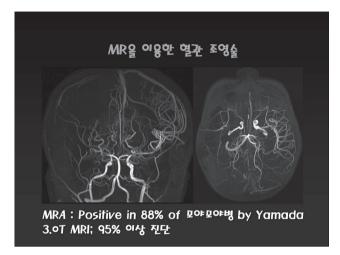

VEGF and KDR Vascular endothelial growth factor (VEGF) is involved in vasculogenesis and vascular permeability in various intracranial lesions. In ischemic disease, cerebral angiogenesis is caused by the release of VEGF. VEGF affects vasculogenesis, endothelial cell proliferation and migration, vascular permeability, and stromal degradation through the activation of proteolytic enzymes that are involved in angiogenesis. VEGF binds its receptor tyrosine kinases, VEGF receptor—I and VEGF receptor—2 (also known as kinase insert domain containing receptor, or KDR). KDR is the key receptor mediating angiogenesis and is essential for endothelial cell survival and integrity

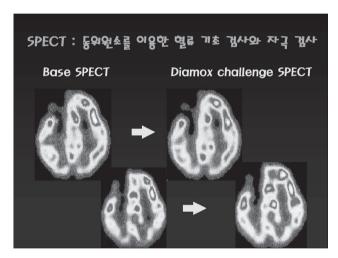


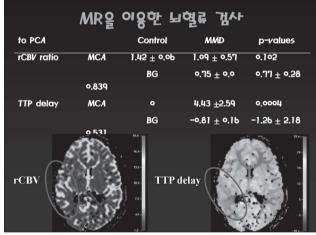


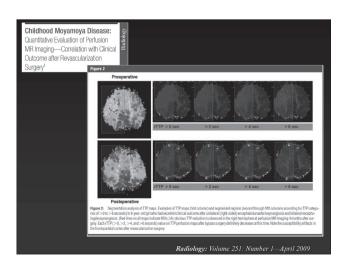


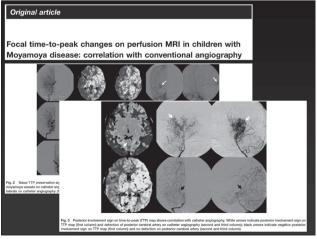


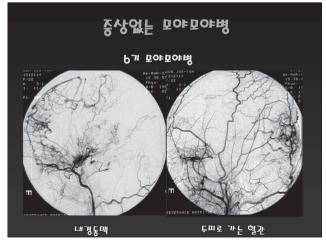


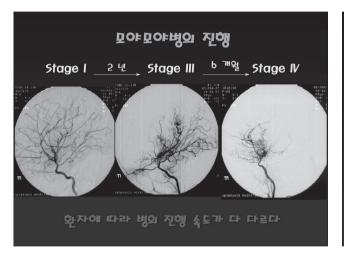


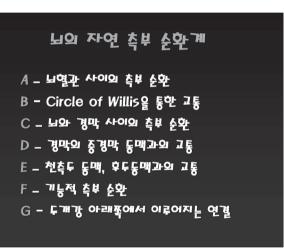


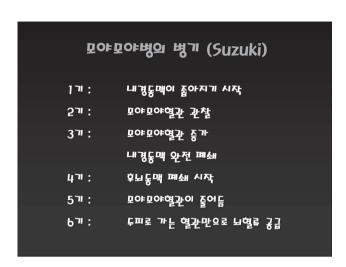




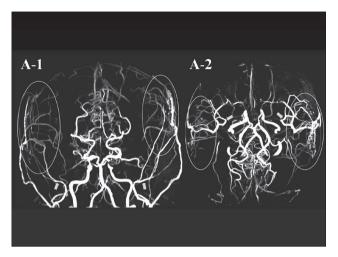


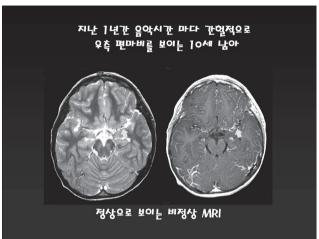




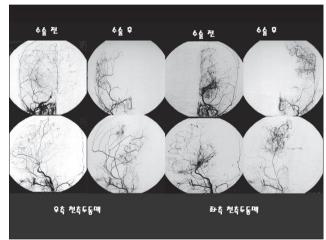


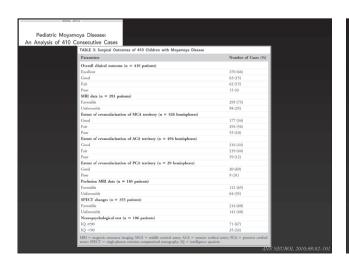


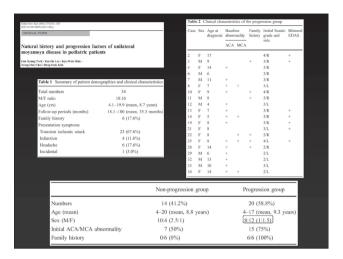


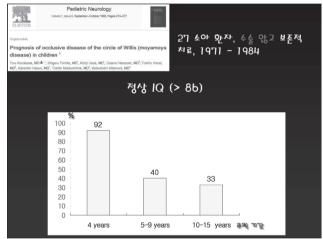


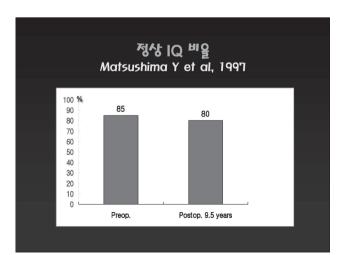
열관 갭사에서의 병기 (Suzuki stage)

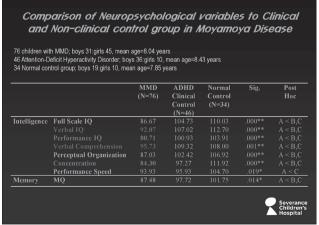


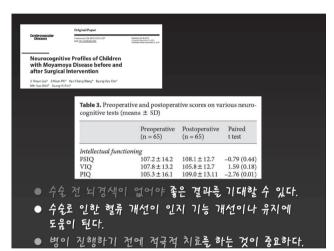


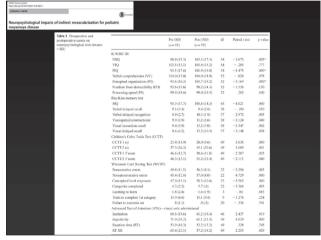


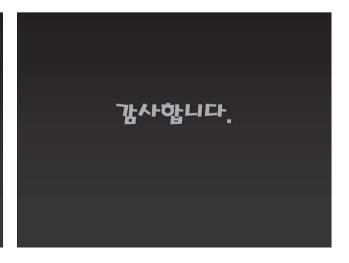



의상 중상에 따른 수술 결정 소아 : 뇌이열성, 반복, 진행이 아주 빠름 성인 : *뇌출열성* 1회성, 진행이 아주 노림 중상 유발 원인 1) 내경동맥의 폐쇄 속도 2) 측부 순한 형성 속도 3) 뇌의 열류 필요량


편측 모야모야병								
	쩐축 비육	평균 나이	활자 수	남 : 여	형란 검사 소견	평균 추석 기간	반대축 진행	진행까지 기간 (개월)
Kelly et al., 2006	178% (28/157)	298	5	1:4	Normal (n=4) or only ACA abnormality (n=1)	25?	2/5 (40%)	135 (8-19)
Seol et al., 2006	3.4% (7/204)	5.1	7	2:5	Normal (n=4) or only ACA abnormality (n=3)	65	2/7 (29%)	295 (27-32)
Smith et al., 2008	/4% (33/235)	10.4	29	14 : 15	Normal (n=12) or some abnormalities (n=21) ?		8/2 9 (28%)	26.4 (12-102) ?
Kim et al., 2010	12.9% (53/410)	?	?		Normal (n=33) or ACA abnormallity (n=20)	?	24/53 (45%)	23 (05-150)
Park et al., 2011	15.4% (40/259)	8.7	34	18:16	Normal (n=12) or ACA or MCA abnormal (n=22)	353	20/34 (588%)	173(73-348)
Yeon et al., 2011	114% (45/394)	9.9	45	24 : 21	Normal (n=15) or only ACA abnormality (n=30)	53	8/45 (18%)	313 (21-71)







		N (tot. N)	Mean(SD)	% in below average or abnormal range
Intelligence	Full Scale IQ	14 (76)	86.67	30.4
	Performance IQ	15 (76)		
Memory	MQ	10 (51)	87.48	32.3
Attention	Inattention	23 (68)	79.95	49.0*
			85.84	
	Mean of Response Time			
	SD of Response Time			
Executive	Perseverative errors	6 (51)	32.71	28.6
Function				
	Category completed			
	Learn to Learn	11 (51)	18.86	

소아 모아타모아 요아 요아 보이는 역의 경과를 바뀔 수 있는 약물 치료는 없다. ○ 치료하지 않은 소아 환자는 혈관 상태나 입상 상태가 결국은 약확한다. ○ 5년 내에 60-70%의 소아 환자는 증상 진행을 보인다. ○ 치료를 하지 않으면 소아에서 결과는 대체로 나쁘다. ○ 치료 당시의 신경학적 상태가 치료의 장기 결과를 반영한다. ○ 조기 진단, 조기 치료가 중요하다.

Diagnostic Image of Moyamoya Disease: Radiologic Image & Differential Diagnosis of Moyamoya Disease

김용배

연세대

Moyamoya disease (MMD) can be defined as a progressive steno-occlusive disease at terminal portions of the bilateral internal carotid arteries and their proximal branches with prominent collateral artery formation. Prompt diagnosis and accurate assessment could significantly improve the prognosis of MMD. To date, different imaging modalities has been used for diagnosis of MMD, including digital subtraction angiography (DSA), computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission CT (SPECT), and positron emission tomography (PET). All of these imaging modalities are useful in certain situation where the specific information of MMD is in need upon their quantitative or qualitative evaluation. Furthermore, recent reveal of superiority of bypass surgery in hemorrhagic MMD may provide us an upgraded understanding about the impact of angiographic feature and hemorrhagic site on the prognosis of hemorrhagic MMD.

Differential diagnoses of MMD may be including cerebral atherosclerosis, autoimmune diseases, meningitis, cerebrovascular damage after head injury, and many anomalies of the intracranial arteries. Additionally, radiation therapy, neurofibromatosis type 1, Down's syndrome, sickle cell disease, and even autoimmune diseases may develop a striate collateral network of the proximal MCA with a web-like pattern. Among them, an anomaly of the middle cerebral artery (MCA) is well mimicking MMD. Among the anomalies of the MCA, rete MCA (R-MCA) is a web-like anomaly of the MCA that does not coalesce and forms a prominent, large single branch from the plexiform vessels in the fetal stage.

In this review, the usefulness of each diagnostic modality are conveyed and discussed to estimate the current status and the prognosis of MMD so that the most suitable strategies could be yield for each individual patient. And, by reviewing different, moyamoya-mimicking disease, we hope valuable insights could be provided for vascular neurosurgeons to avoid misdiagnosis and unnecessary treatments.

대한뇌혈관내수술학회 | 대한뇌혈관외과학회 SKEN-KSCVS 합동 연수강좌

Session II. Moyamoya Disease: Treatment

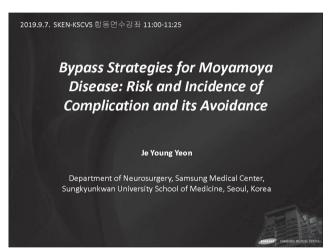
좌장: 성재훈 (가톨릭대), 고현송 (충남대)

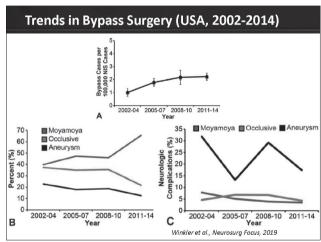
1. Bypass strategies for Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery

연제영 (성균관대)

2. Surgical role in hemorrhagic Moyamoya disease

김정은 (서울대)


3. Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic manifestation


반승필 (서울대)

Bypass strategies for Moyamoya disease: Risk and incidence of complication & avoidance of complication from revascularization surgery

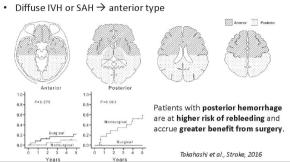
연제영

성균관대

Bypass indications and Level of Evidence

- · Flow-augmentation for ischemic moyamoya disease
 - level of evidence 4; grade of recommendation C
- · Flow-augmentation for hemorrhagic moyamoya disease
 - level of evidence 1B; grade of recommendation A
- · Flow-augmentation for medially refractory carotid occlusion
 - level of evidence 5; grade of recommendation D

Esposito et al., Acta Neurochir, 2018

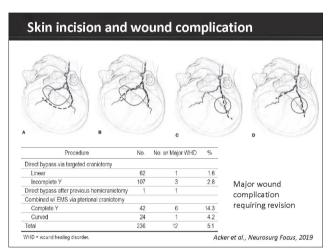

Hemorrhagic MMD - JAM trial

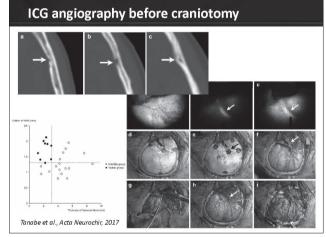
- Multicentered, prospective, randomized, controlled trial conducted by 22 institutes in Japan
- Intracranial hemorrhage within the preceding year
- · Conservative care or bilateral EC-IC direct bypass
- Rebleeding rate for 5 years (P=0.042 in the K-M analysis)
 - 5 patients in the surgical group (11.9%), 2.7%/year
 - 12 in the nonsurgical group (31.6%), 7.6 %/year

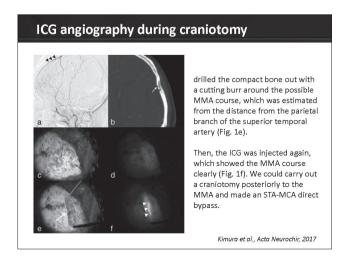
	Surgical Group (n=42)		Nonsurgical Group (n=38)			
	n	Rate, %	n	Rate, %	Hazard Ratio (95% CI)	P Value
Primary end point	6	14.3	13	34.2	0.391 (0.148-1.029)	0.057
Recurrent bleeding	5	11.9	12	31.6	0.355 (0.125-1.009)	0.052
Completed stroke	1	2.4	0	0.0		
Crescendo TIA (bypass required)	0	0.0	1	2.6	***	
* Ischemic stroke or TIA: 0.5	%/year ir	each grou	dr	1	Viiyamoto et al., Stroke,	2014

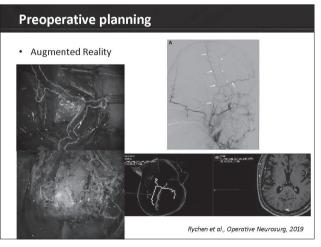
Hemorrhagic MMD - JAM trial

- · Analysis in the Japan Adult Moyamoya (JAM) Trial
- · Hemorrhagic site classified as either anterior or posterior

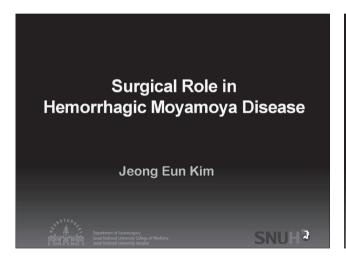


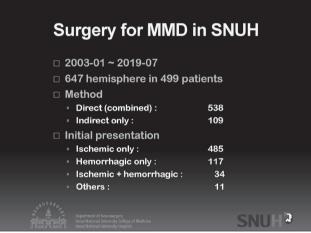

Risk factors for postoperative stroke


- Meta-analysis of 8 studies encompassing 1649 patients
- · Preoperative ischemic event
- PCA involvement
- Diabetes

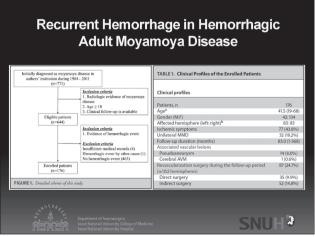

Preoperative possible risk factors	Number of articles	P	P value for heterogeneity	Pooled OR(95%CI)	P for pooled results	P for Begg's tes
Ischemic events	5	74.4%	0.001	1.40 (1.02-1.92)	0.039	0.230
PCA involvement	5	83.4%	0.000	2.64 (1.17-5.95)	0.019*	0.806
Suzuki stage	4	32.8%	0.215	1.20 (0.97, 1.49)	0.101	0.734
Surgery type (DB as reference)	4	0.0%	0.601	1.12 (1.03, 1.33)	0.017*	0.806
Age	5	38.2%	0.167	1.02 (1.00, 1.04)	0.090	0.806
Mae sex	4	0.0%	0.595	1.16 (0.75-1.82)	0.504	1.000
Diabetes	3	5.9%	0.345	4.02 (1.59, 10.16)	0.003	0.296
Hypertension	2	0.0%	0.494	0.70 (0.31, 1.58)	0.392	-

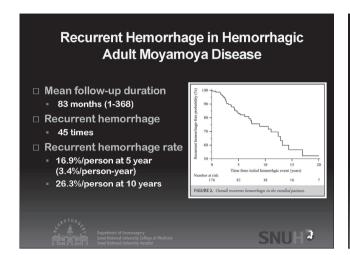
Wei et al., BMC Neurology, 2019

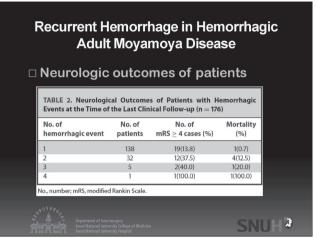


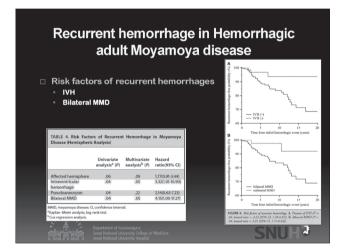


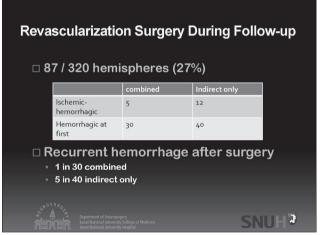
Surgical role in hemorrhagic Moyamoya disease

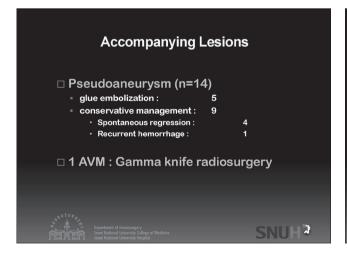

김정은

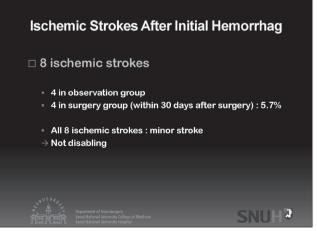

서울대

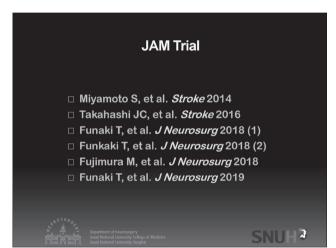


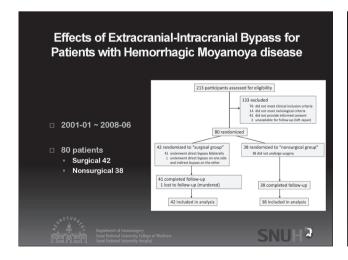


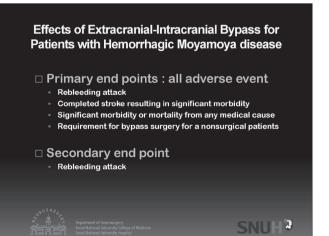


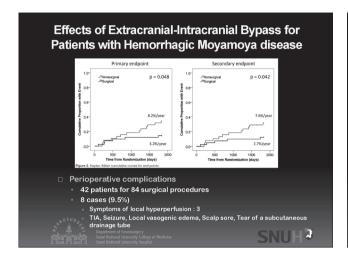


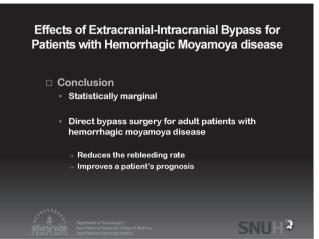


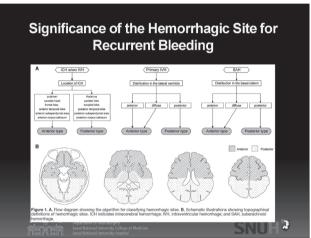


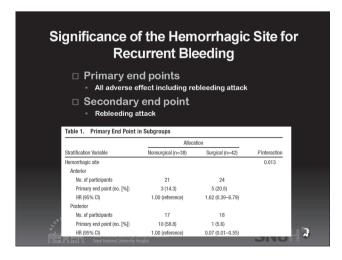


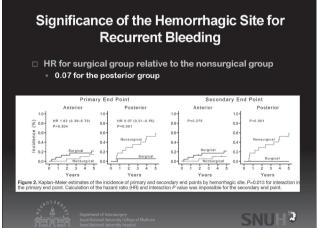


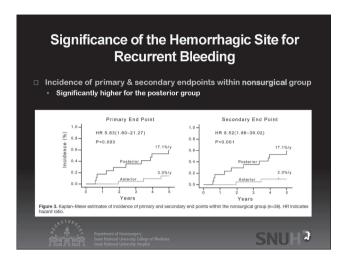


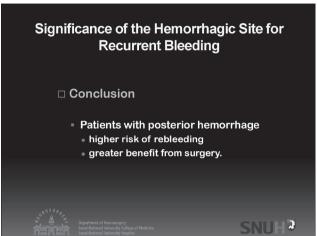


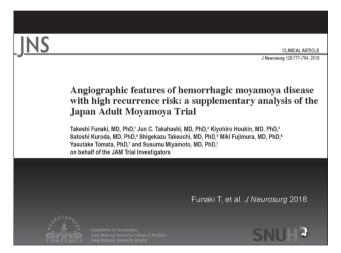


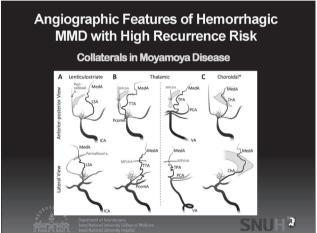


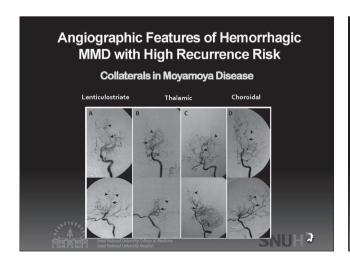




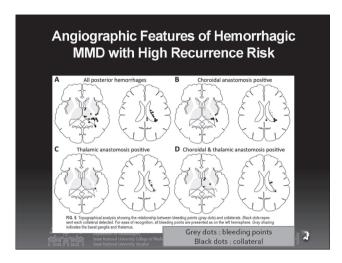


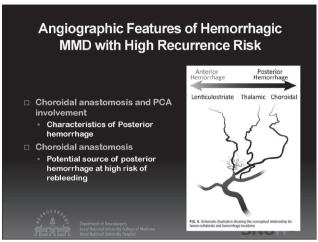


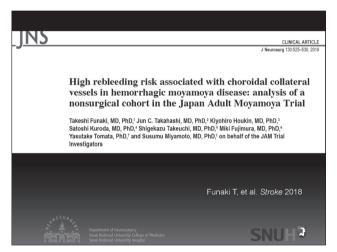


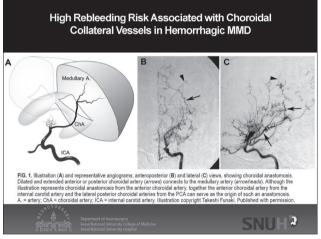


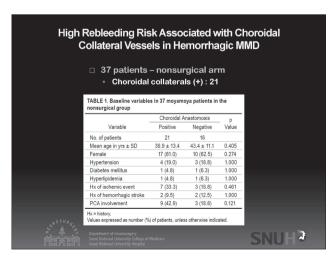


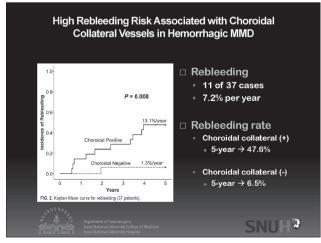


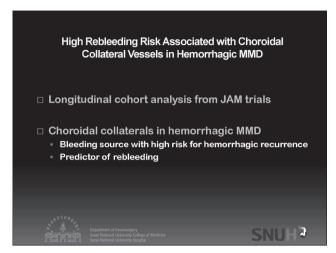


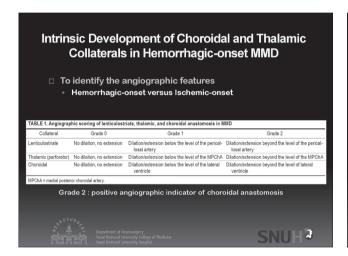


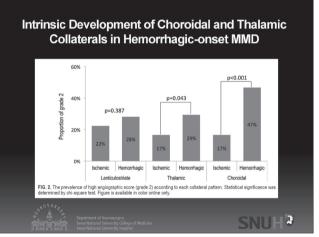


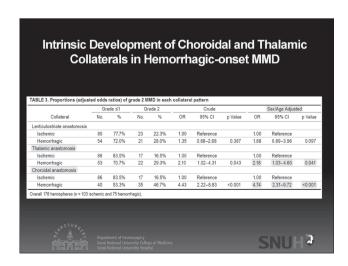


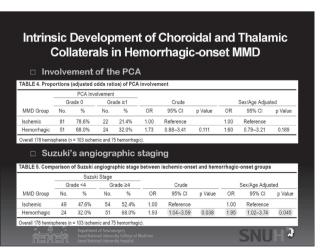


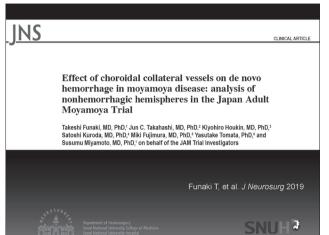


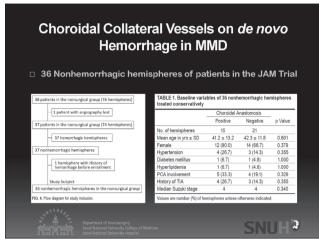


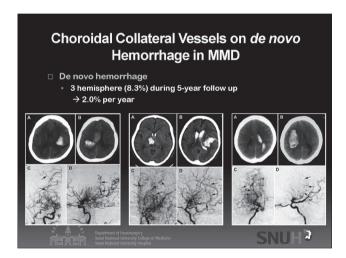


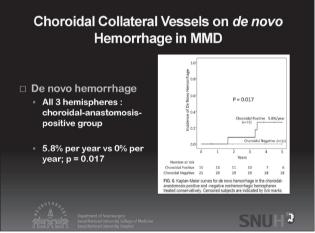


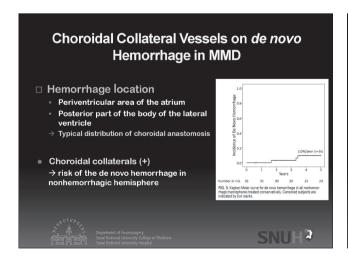


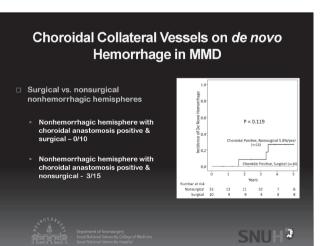


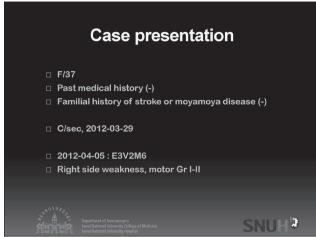


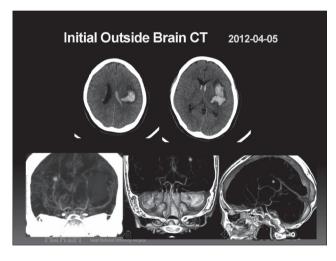


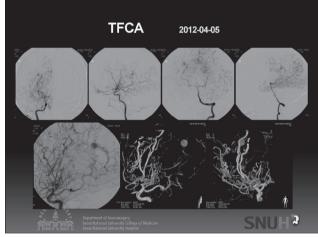


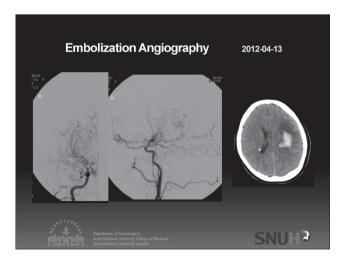


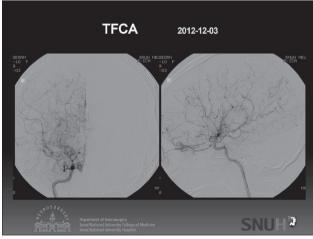


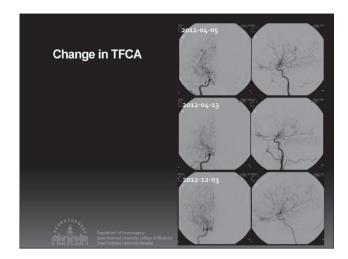


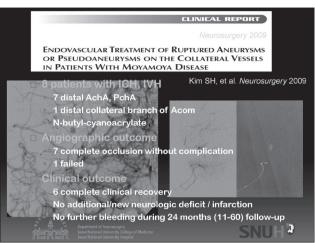


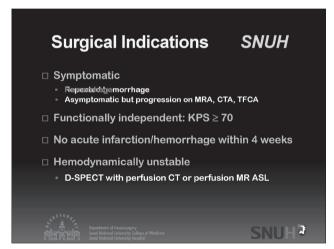


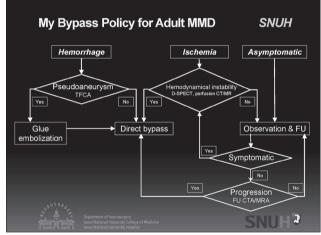


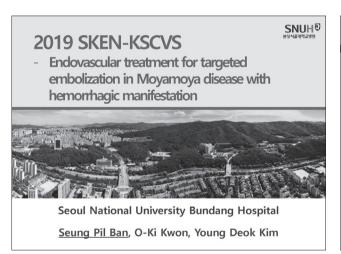


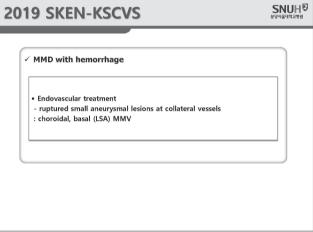


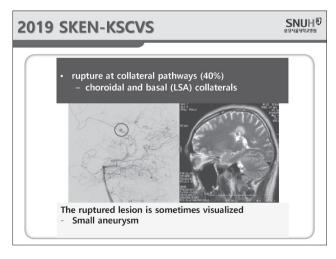




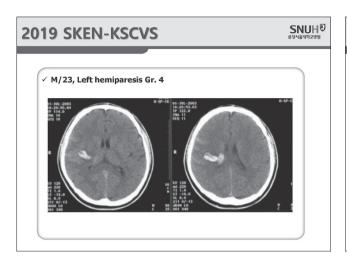


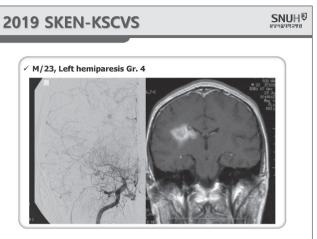


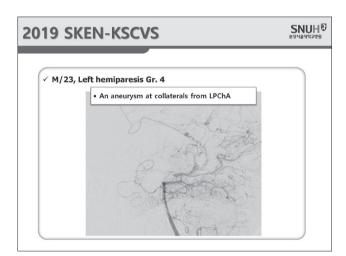


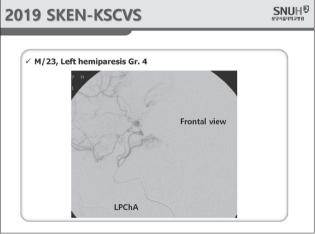

Endovascular treatment for targeted embolization in Moyamoya disease with hemorrhagic manifestation

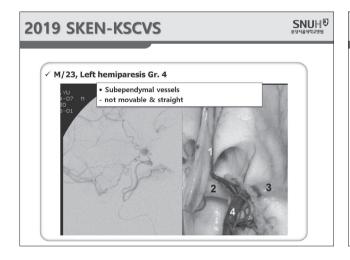
반승필

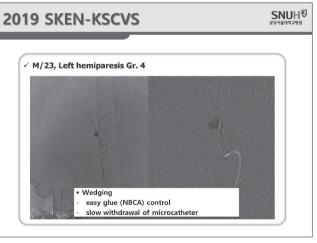

서울대

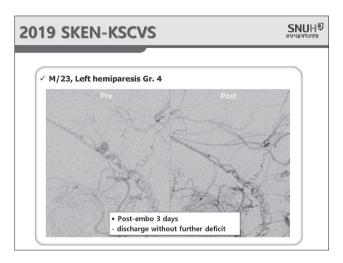


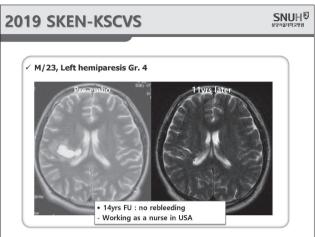


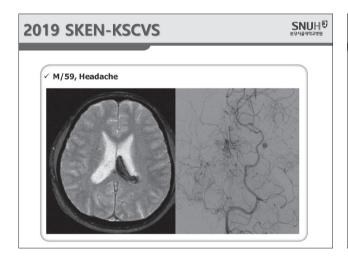


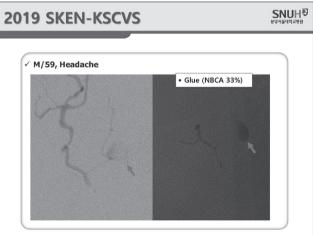


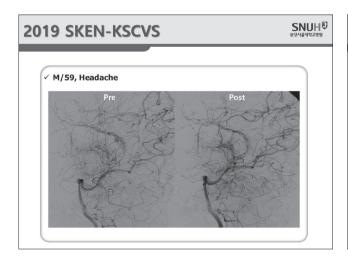


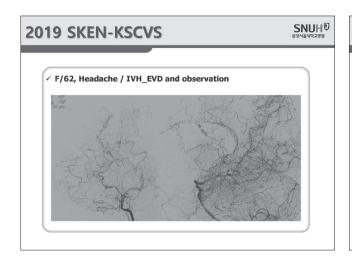


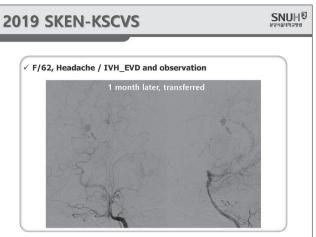


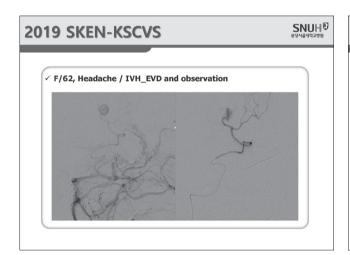


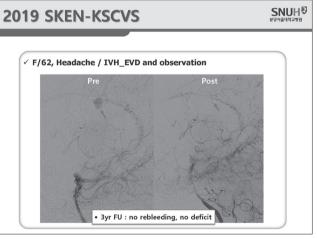


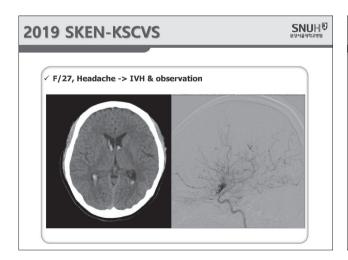


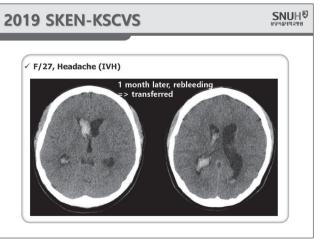


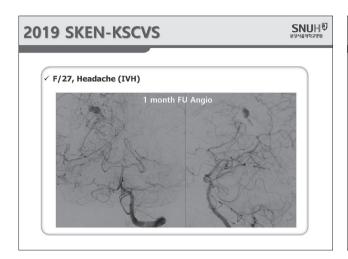


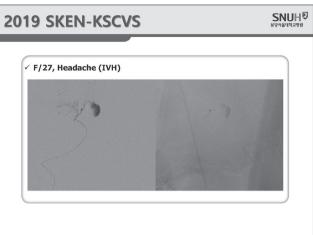


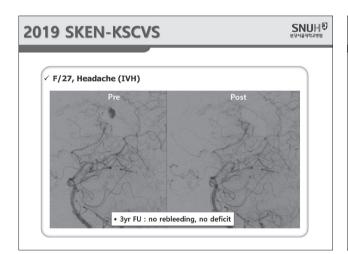


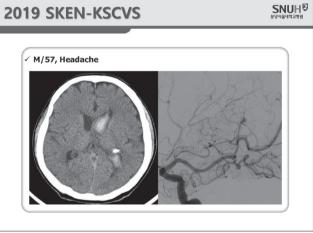


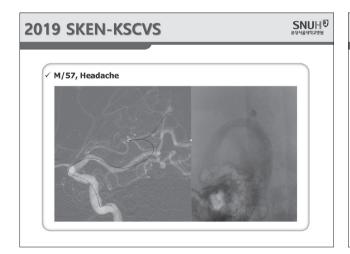


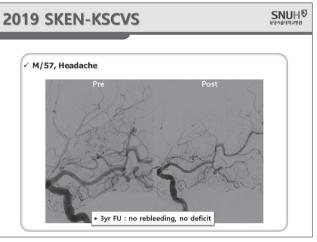


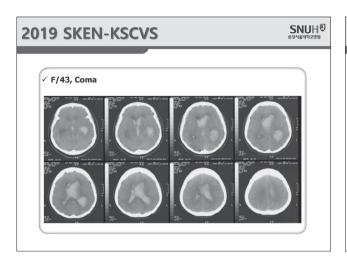


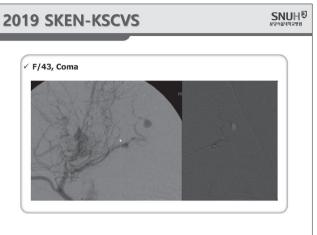


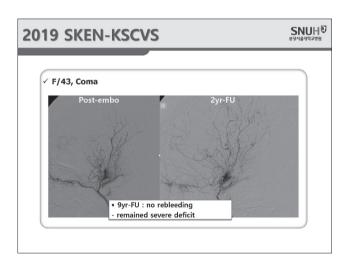


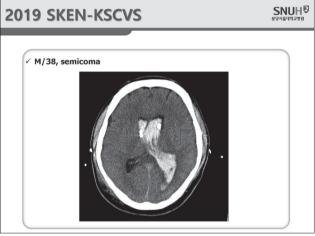


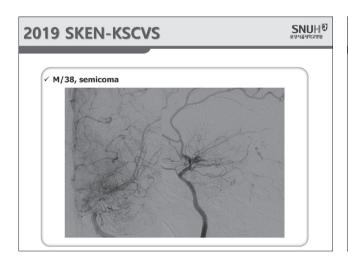


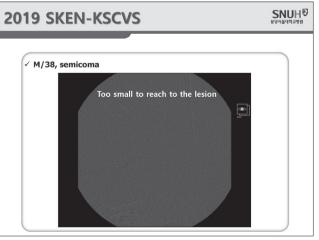


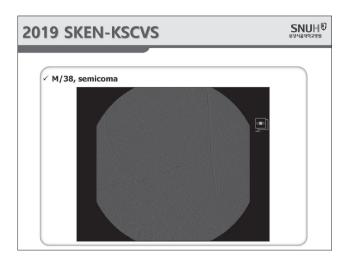


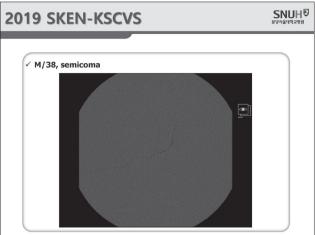


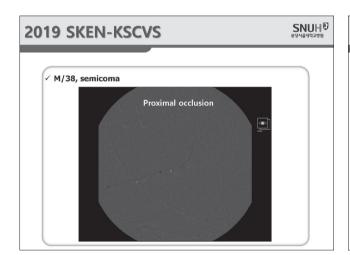


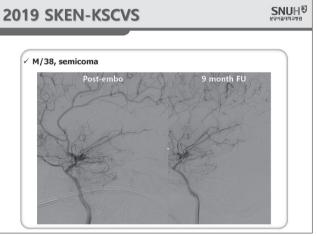


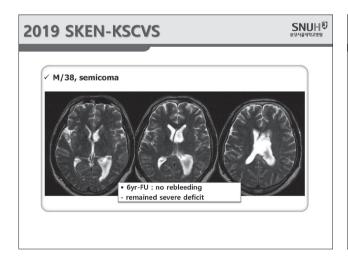


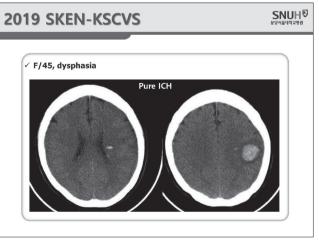


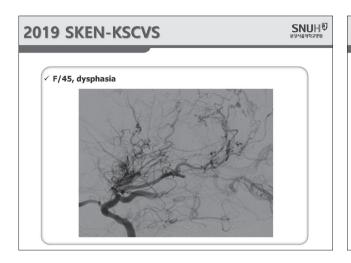


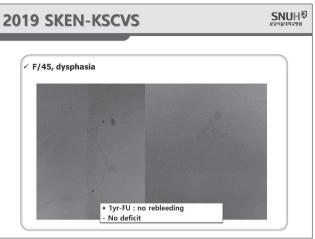


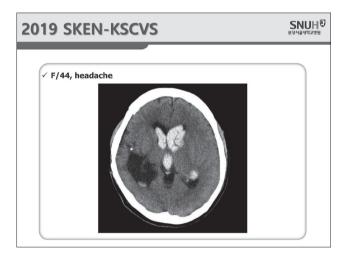


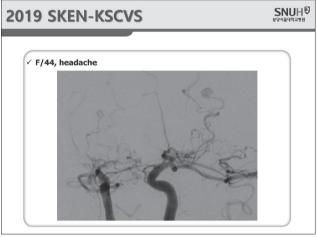


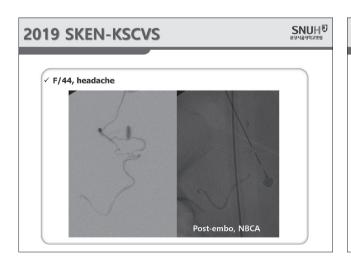


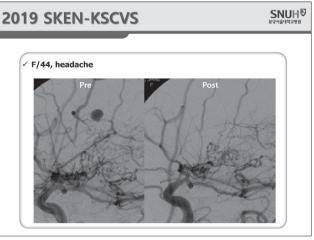


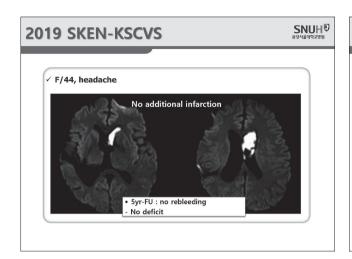


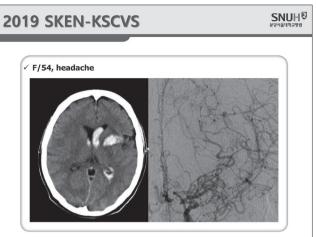


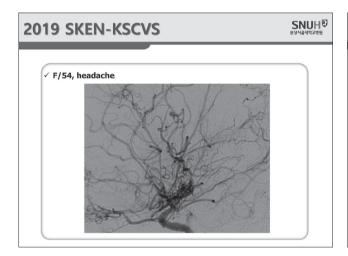


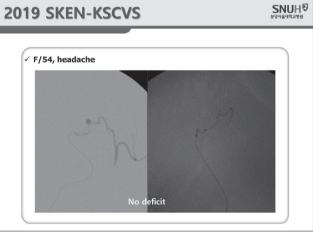


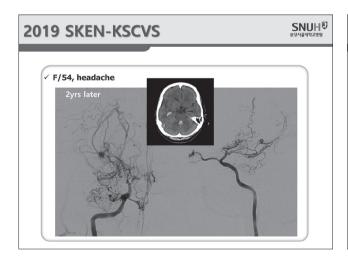


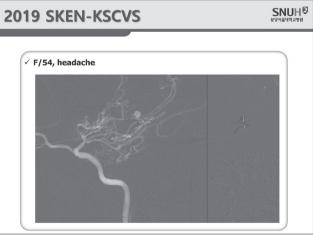


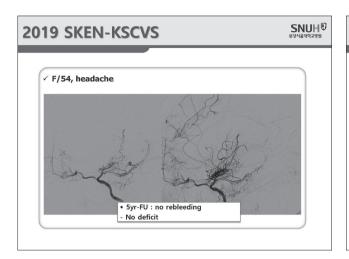


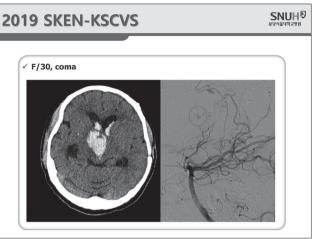


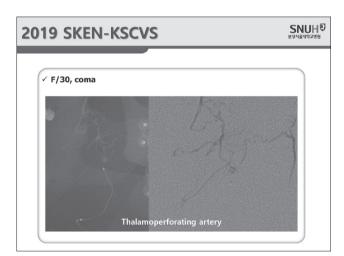


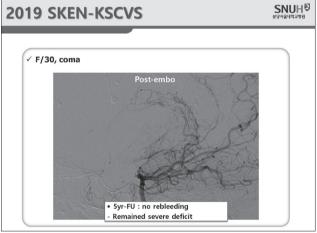


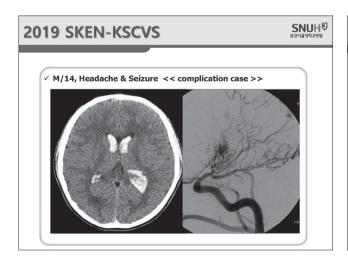


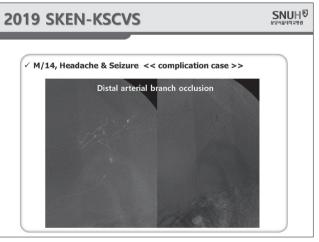


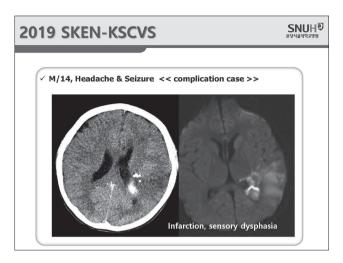


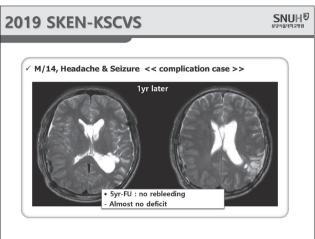


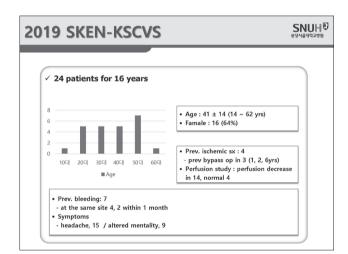




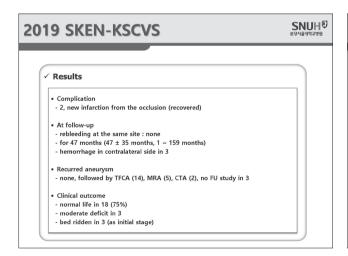


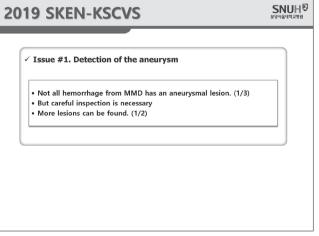


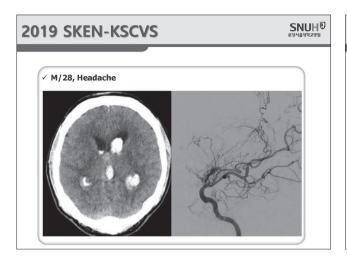


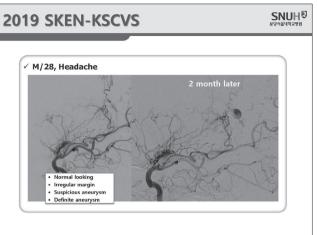


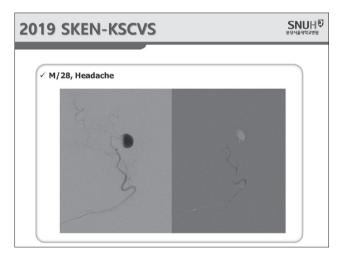


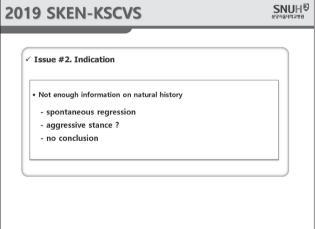


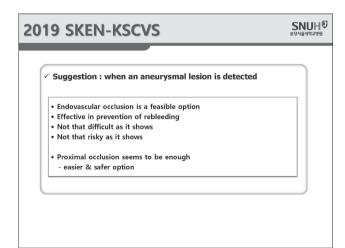


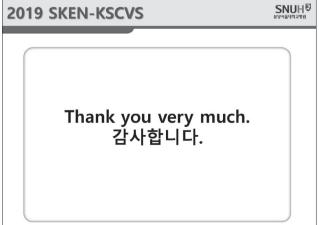












대한뇌혈관내수술학회 | 대한뇌혈관외과학회 SKEN-KSCVS 합동 연수강좌

Special Lecture

좌장: 고준석 (경희대), 김종수 (성균관대)

1. Clinical application of DTI for stroke in the viewpoint of neurosurgery

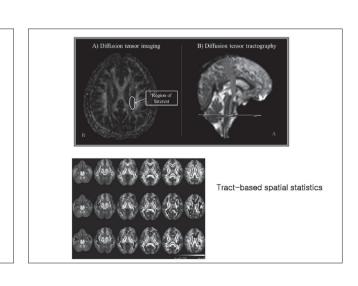
장성호 (영남대 재활의학과)

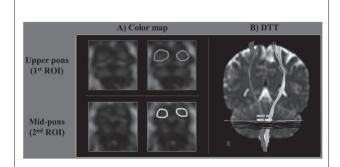
Clinical application of DTI for stroke in the viewpoint of neurosurgery

장성호

영남대 재활의학과

Clinical Application of DTI for Stroke in Viewpoint of Neurosurgery


영남의대 재활의학교실 장 성 호

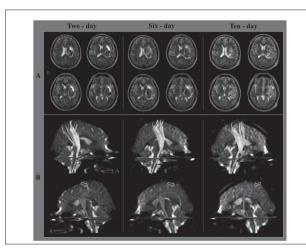

순서

- Diffusion tensor tractography
- Intracerebral hemorrhage
- Cranioplasty
- EVD
- Shunt

Our Brain Mapping Techniques

- Transcranial Magnetic Stimulation(TMS)
- Functional MRI
- Diffusion tensor tractography (DTT)
- Functional NIRS

Analysis conditions: 1) Fractional anisotropy, 2) Angle


Repeatability & Reproducibility: 0.9~1.0

DTT로 reliable하게 분석할 수 있는 Neural tracts

- Motor: Corticospinal tract, Corticoreticulospinal tract, Corticofugal tract from secondary motor area, Corticobulbar tract
- Somatosensory: Medial lemniscus, Spinothalamic tract
- Movement: Dentatorubrothalmic tract, Corticopontocerebellar tract
- Consciousness: Ascending reticular activating system
- Cognition: Papez circuit, Fornix, Cingulum, Prefronto-thalamic tract, Prefronto-caudate tract
- Vestibular: Cortico-thalamo-vestibular tract, Vestibulo-cerebellar tract, Vestibulospinal tract
- · Visual: Optic radiation
- · Auditory: Auditory radiation, Auditory tract
- · Language: Arcuate fasciculus
- Cranial nerves: CN 3, 5, 9, 10
- Others: Superior longitudinal tract, Inferior longitudinal tract, IFOF, Uncinate fasciculus, SCP, MCP, ICP, Corpus callosum

순서

- · Diffusion tensor tractography
- Intracerebral hemorrhage
- Cranioplasty
- EVD
- Shunt

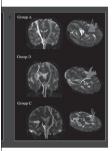
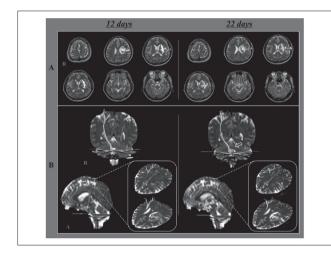
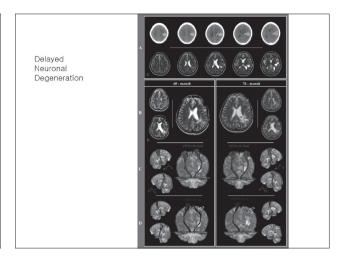

Difference of injury of the corticospinal tract according to surgical or conservative treatment in patients with putaminal hemorrhage

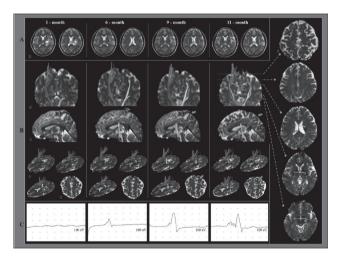
Table 2. Change of volumes of hematoma, peri-hematomal edema and total lesion.

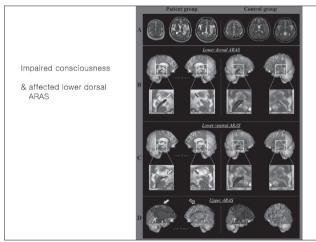
	Surgical treatment group	Conservative treatment group
Hematoma volume on initial brain CT	30.69 ± 4.16	29.17 ± 3.43
Hematoma volume on brain MRI	15.41 ± 9.64^a	$24.91 \pm 9.45^{\circ}$
Peri-hematomal edema volume on brain MRI	10.18 ± 9.81^a	$26.80 \pm 15.28^{\circ}$
Total lesion volume on brain MRI	25.60 ± 16.73	51.71 ± 20.05^{abc}

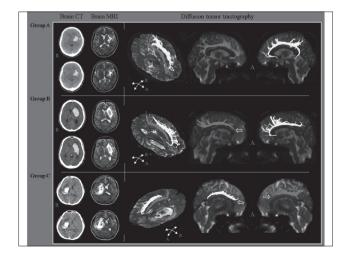
Average 23 days after onset

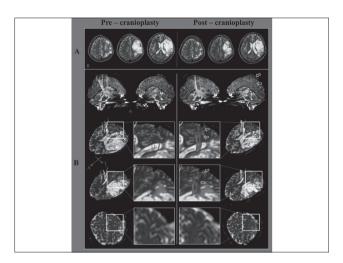

Difference of injury of the corticospinal tract according to surgical or conservative treatment in patients with putaminal hemorrhage

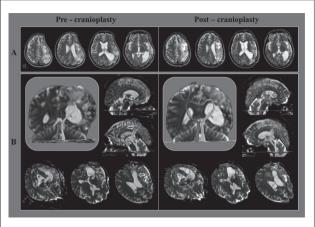


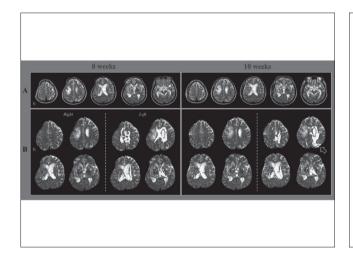

 $\label{thm:continuous} Table \ 3. \quad Types \ of the \ affected \ corticospinal \ tract \ on \ diffusion \ tensor \ tractography.$

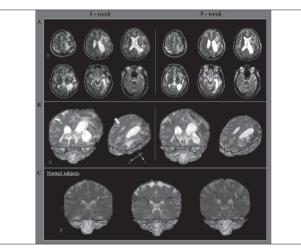

	Surgical treatment group $(n = 20)$	Conservative treatmen group $(n = 26)$
Туре		
Type A	8 (40%)	2 (8%)
Type B	2 (10%)	8 (31%)
Type C	10 (50%)	16 (61%)

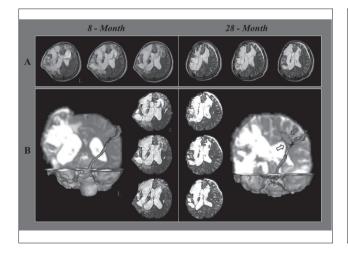

Values are presented as the number of patients.

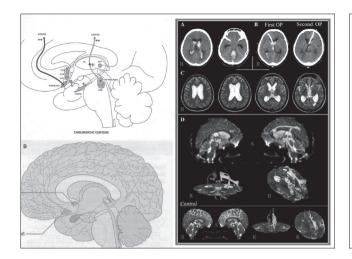


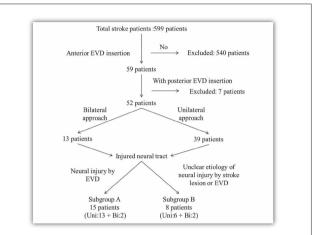


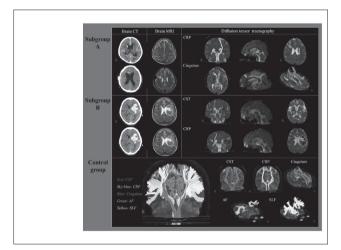


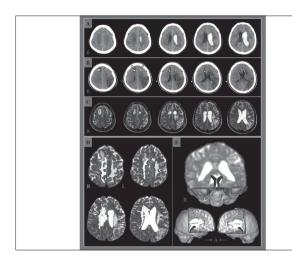

순서

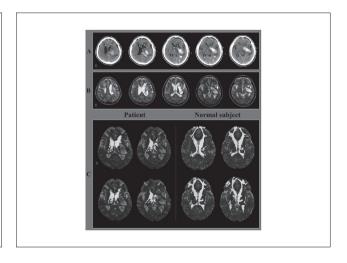

- Diffusion tensor tractography
- Intracerebral hemorrhage
- Cranioplasty
- EVD
- Shunt

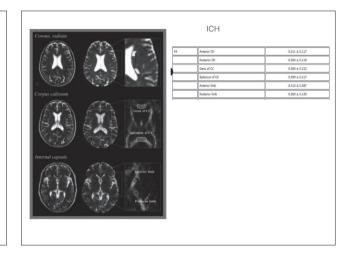


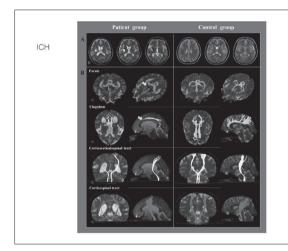


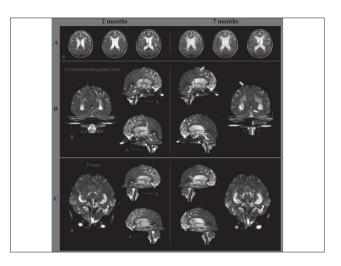


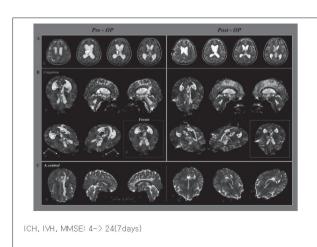

순서

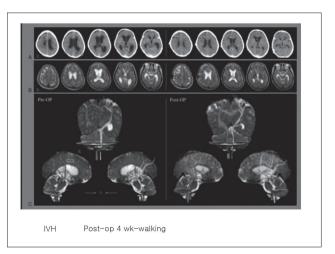

- Diffusion tensor tractography
- Intracerebral hemorrhage
- Cranioplasty
- EVD
- Shunt

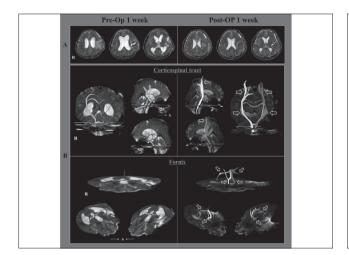


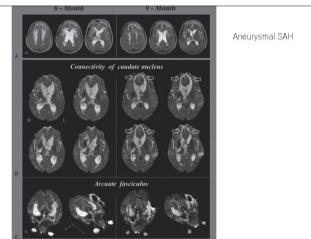





순서


- Diffusion tensor tractography
- Intracerebral hemorrhage
- Cranioplasty
- EVD
- Shunt





대한뇌혈관내수술학회 | 대한뇌혈관외과학회 SKEN-KSCVS 합동 연수강좌

Session III. Intracranial Dissection: General

좌장: 윤석만 (순천향대), 김태선 (전남대)

- 1. Epidemiology and pathophysiology of intracranial dissection 권오기 (서울대)
- 2. Diagnostic image of intracranial dissection

류창우 (경희대 영상의학과)

3. Natural course and medical treatment for intracranial dissection

김대원 (원광대)

Epidemiology and pathophysiology of intracranial dissection

권오기
서울대

Diagnostic image of intracranial dissection

류창우

경희대 영상의학과

두개강내 혈관박리는 비교적 젊은 연령에서 뇌졸중의 중요원인으로 인식되고 있다. 혈관 박리는 다양한 형태로 나타나며 일반적으로는 혈관내막(intima)이 손상되고 분리되면서 혈류에 밀려 혈관 중막(media) 및 외막(adventitia)으로 박리가 되면 협착, 폐색, 뇌동맥류 또는 뇌출혈으로 나타날 수 있다. 혈관박리에서 영상은 사실상 유일한 진단방법이며, intramural hematoma, double lumen, 박리성 동맥류, dissecting intimal flap 등을 영상에서 관찰하여 혈관박리로 진단하게 된다. 일 반적으로Digital subtraction angiography가 표준 진단도구로 여겨지고 있으나, 혈관강의 외측을 못보는 한계가 있어 여러 다른 비침습적 영상방법을 병행하여야 진단이 가능한 경우가 있다.

이번 강좌에서는 두개강내 혈관박리의 영상진단의 기법과. 방법. 영상소견에 대하여 알아보고자 한다.

Digital Subtraction Cerebral Angiography

Digital subtraction cerebral angiography은 영상장비 중 동맥의 형태를 가장 정확히 보여줄 수 있고, 동적인 혈류를 보여주기 때문에, 아직까지 혈관박리의 진단에 있어서 골드스탠다드의 역할을 한다. 혈관조영술에서 두개강내 혈관박리의 소견은 1) intimal flap 2) double lumen 3) pearl and string sign 4) fusiform dilation and stenosis등이다. Intimal flap과 double lumen은 특징적인 소견이나 일부의 경우에서만 관찰되며 Pseudolumen은 명확한 경계가 없이 조영제의 정체만으로 보일 수 있다. pearl and string sign과 fusiform dilataion and stenosis는 비교적 흔하게 볼 수 있는 소견이나 이러한 두 소견이 혈관박리 외의 다른 경우에도 볼 수 있는 소견이기 때문에 확진의 소견으로 간주할 수 없다. 이러한 이유로 근 래에 들어서는 MRI 및 MRA가 혈관박리가 의심되는 환자에서 중요한 일차영상검사로 여겨지고 있다.

이와 같이 혈관조영술로 진단이 명확치 않은 경우 다른 영상방법을 병행하여 혈관강 바깥의 소견, 즉 intramural hematoma와 pseudolumen을 관찰하여야 정확한 진단을 할 수 있다.

CT Angiography

CT angiography (CTA)는 빠르게 뇌혈관의 영상을 얻을 수 있는 장점이 있는 검사이며, 기본적으로 두개강내 혈관박리의 CTA에서는 고식적 혈관조영술과 같이 intimal flap 과 double lumen을 봄으로써 혈관박리를 진단하게 된다. CTA의 source images에서 혈관강 외측의 병리를 단면으로 볼 수 있기 때문에 pseudolumen을 관찰할 수 있다. 그러나 wall thickening으로만 보이는 소견은 동맥경화증과 감별하기 어려울 수 있다. 또한 영상획득에 있어 적절한 타이밍의 스캔과 조영제의 투여속도가 요구되기 때문에 진단에 적합한 영상을 얻지 못할 수도 있다.

MRI and MRA

Intramural hematoma는 특징적으로T1 강조영상에서 고신호강도의, 초생달 모양의 혈관벽의 두꺼워짐으로 관찰된다. 또는 혈관벽의 두께 증가는 positive remodeling의 양상으로 나타난다. 자주 보이는 소견은 아니지만 단면영상 및 MRA source imaging에서 intimal flap이 관찰될 수도 있다. DSA와 같이 MRA에서도 pearl and string sign과 fusiform dilation and stenosis 로 관찰될 수 있다. 그러나 MRI, MRA는 해상도가 conventional angiography보다 낮기 때문에 단순한 atherosclerosis의 소견으로 오해하고 진단이 안될 수도 있다. 또한 time—of—flight (TOF) MRA검사의 특성상 혈관내 turbulence flow에 의해 intimal flap이 위양성으로 인식될 수 있다. Peri—arterial fat이나 intraluminal thrombus 역시 Intramural hematoma로 오인될 수 있다. 그 외 fenestration과 같은 해부학적 변이도 혈관박리로 오진할 수 있다. 이러한단점을 보완하기 위하여 다음과 같은 추가적인 영상검사방법이 추천되고 있다.

- 1, 조영증강 MRI 및 MRA검사: intimal flap과 double lumen을 더 용이하게 진단할 수 있도록 해준다.
- 2. Susceptibility weighted imaging: 혈액성분을 강조하여 보여주는 영상이며 intramural hematoma가 crescent dark rim으로 보인다.
- 3. Basiparallel Anatomic Scanning (BPAS): vertebrobasilar artery의 장축에 따라 20mm의 절편으로 두꺼운 영상을 획득하여 혈관외벽을 형상화 하는 기법으로 혈관외벽과 MRA의 혈관내 형태를 비교함으로써 혈관박리를 진단할 수 있다.

Recommendation of Diagnostic Procedures for Intracranial Dissection

출혈성 박리

급성 지주막하 출혈이 동반된 혈관박리는 CTA에서 double lumen, pearl and string sign, fusiform aneurysm을 진단하고, saccular aneurysm을 배제하는 것이 필요하다. 이후 DSA를 시행하여 이러한 소견을 확진하고 혈관내 치료의 가능성을 확인하여야 한다.

허혈성 박리

MRI가 아주 중요한 진단 수단이며 posterior circulation의 경우 BPAS와 MRA를 동시에 얻어 비교하는 방법이 효과적이다. MRA에서 double lumen, intramural hematoma, fusiform dilatation, and the pearl and string sign을 진단하고 T1강조영상과 MRA source 영상에서 혈관벽의 intramural hemorrhage 와 intimal flap을 진단할 수 있다. 조영증강 T1 강조영상 또는 MRA source 영상에서는 double lumen을 더 쉽게 진단할 수 있다.

영상검사의 한계

혈관박리의 진단 자체가 영상검사에 전적으로 의지하는 질환이기 때문에 영상검사에 대한 의존도가 높다. 그러나 고령에서 전형적인 증상이 없이 발생한 혈관박리의 경우, 영상 검사의 소견이 atherosclerosis와 감별이 어려울 수 있다. 이러할 경우 혈관박리는 시간에 따라 변하기 때문에 추적검사가 중요하다.

결론

혈관박리는 급성기에 적절히 진단이 되지 않고 치료가 늦어진다면 환자에게 심각한 결과를 초래할 수 있다. 따라서 빠르고 정확한 진단이 필요하며 이를 위해 다양한 방법의 영상검사법과 영상소견을 이해하는 것이 필요하다.

참고문헌

- 1. Hwang, J., et al., Selective Application of High-Resolution 3 T MRI in the Evaluation of Intracranial Vertebral Artery Dissection. *J Neuroimaging*, 2017. 27(1): p. 71-77.
- 2. Kanoto, M. and T. Hosoya, Diagnosis of Intracranial Artery Dissection. Neurol Med Chir (Tokyo), 2016. 56(9): p. 524-33.
- 3. Ryoo, S., et al., Differential Vascular Pathophysiologic Types of Intracranial Atherosclerotic Stroke: A High-Resolution Wall Magnetic Resonance Imaging Study. *Stroke*, 2015. 46(10): p. 2815-21.
- 4. Noh, H.J., et al., Role of high-resolution magnetic resonance imaging in the diagnosis of primary angiitis of the central nervous system. *J Clin Neurol*, 2014. 10(3): p. 267-71.
- 5. Kim, T.W., et al., Intramural hematoma detection by susceptibility-weighted imaging in intracranial vertebral artery dissection. *Cerebrovasc Dis*, 2013. 36(4): p. 292-8.
- 6. Gottesman, R.F., et al., Imaging characteristics of symptomatic vertebral artery dissection: a systematic review. *Neurologist*, 2012. 18(5): p. 255-60.
- 7. Provenzale, J.M., MRI and MRA for evaluation of dissection of craniocerebral arteries: lessons from the medical literature. *Emerg Radiol*, 2009. 16(3): p. 185-93.
- 8. Lum, C., et al., Vertebral artery dissection with a normal-appearing lumen at multisection CT angiography: the importance of identifying wall hematoma. *AJNR Am J Neuroradiol*, 2009. 30(4): p. 787-92.

- 9. Park, K.W., et al., Vertebral artery dissection: natural history, clinical features and therapeutic considerations. *J Korean Neurosurg Soc*, 2008. 44(3): p. 109-15.
- 10. Shin, J.H., et al., Vertebral artery dissection: spectrum of imaging findings with emphasis on angiography and correlation with clinical presentation. *Radiographics*, 2000. 20(6): p. 1687-96.
- 11. Kitanaka, C., et al., Nonsurgical treatment of unruptured intracranial vertebral artery dissection with serial follow-up angiography. *J Neurosurg*, 1994. 80(4): p. 667-74.

Natural course and medical treatment for intracranial dissection

김대원

원광대

Although intracranial artery dissection is less common than cervical artery dissection in adults of European ethnic origin, intracranial artery dissection is reportedly more common in children and in Asian populations. Noninvasive neuroimaging techniques are increasingly identifying unruptured intracranial arterial dissections (IADs) at examination for headache or ischemic symptoms. Approximately 3% of cases of aneurysmal subarachnoid hemorrhage (SAH) are caused by IADs, but the natural history of unruptured IADs is not known. Intracranial artery dissections (IADs) are still considered relatively rare but are an important cause of stroke, especially in young adults. Furthermore, they are a cause of subarachnoid hemorrhage (SAH) or compression on brainstem or cranial nerves and are therefore of clinical significance. Publications on IAD presenting with ischaemia are scarce and comprise small series, whilst there are many publications about IAD presenting with SAH including large series. As a consequence, these studies are prone to recruitment bias. General recommendations are therefore difficult to formulate and it seems necessary to distinguish between clinical presentations with SAH or ischaemia since the natural history and prognosis of these conditions are very different. Treatment of intracranial artery dissections is empirical in the absence of data from randomised controlled trials. Most patients with subarachnoid hemorrhage undergo surgical or endovascular treatment to prevent rebleeding, whereas patients with intracranial artery dissection and cerebral ischaemia are treated with antithrombotics. Prognosis seems worse in patients with subarachnoid hemorrhage than in those without. Currently, there are no studies supporting the superiority of anticoagulants to antiplatelet agents. A recent study failed to show a risk reduction of recurrent ischaemic stroke in patients receiving anticoagulants compared with those treated with antiplatelet agents. The use of anticoagulants in the acute phase of IAD is controversial as it can lead to progression of the dissection, expansion of the intramural hematoma and increased luminal stenosis or hemorrhagic transformation of recent cerebral ischemia. However, treatment with antiplatelet agents or anticoagulants appears to be safe according to some cohort studies. It is recommended to maintain anticoagulants or antiplatelet agents for at least 3-6 months or until complete recanalization of the artery has occurred. Patients with recurrent or progressive ischemic symptoms, despite medical therapy, or with enlargement of the dissecting aneurysm are usually treated with endovascular or surgical approaches.

대한뇌혈관내수술학회 | 대한뇌혈관외과학회 SKEN-KSCVS 합동 연수강좌

Session IV. Intracranial Dissection: Treatment

좌장: 신용삼 (가톨릭대), 정영균 (인제대)

1. Surgical treatment for intracranial dissection

박재찬 (경북대)

2. Endovascular treatment for intracranial dissection

백승국 (부산대 영상의학과)

3. Complicated cases and panel discussion

주성필 (전남대) 김성림 (가톨릭대) 이재일 (부산대) 박중철 (울산대)

Surgical treatment for intracranial dissection

박재찬

경북대

This presentation is particularly about the surgical treatment of dissecting anterior circulation intracranial aneurysms. Cerebral aneurysms arising at the non-branching sites are classified into 4 different types based on the lesional patterns of the internal elastic lamina. As Mizutani type 1, classic dissecting aneurysms of intracranial carotid circulation are extremely rare, they are discussed based on the clinical study by Ohkuma et al. Characteristic angiographic findings to confirm Mizutani type 1 arterial dissection are as follow: (1) the double-lumen sign (the presence of false lumen or an intimal flap) is used as a reliable finding of arterial dissection; (2) stenosis with dilatation (the pearl and string sign) is also used as a reliable finding of arterial dissection; (3) dilatation without stenosis requires an additional definition to confirm arterial dissection (Discoloration of the affected artery around the aneurysmal dilatation, which is considered to be due to intramural hematoma, should be seen during operation); and (4) stenosis without dilatation (the string sign) or occlusion (tapered occlusion) also requires additional definitions. Stenosis is not segmental but extensive on initial angiography, and resolution of stenosis or occlusion should be seen on follow-up angiography, which is considered to be a reliable angiographic sign of arterial dissection. The patient groups of bleeding presentation and ischemic presentation are compared in their angiographic findings and treatment.

Mizutani type 4 aneurysms arise in arterial areas with minimally disrupted internal elastic lamina without intimal thickening. In the presenter's clinical series, blister-like aneurysms arising at the internal carotid artery (n = 20), anterior communicating artery (n = 4), and middle cerebral artery (n = 3) are discussed. All blister-like aneurysms presented with acute subarachnoid hemorrhage and were treated surgically. Meanwhile, a case of an intra-arterial schwannoma at the M1 segment of a middle cerebral artery is discussed. It was misdiagnosed as an arterial dissection preoperatively, presenting with a subarachnoid hemorrhage and a small bulge of the M1 segment on the preoperative angiogram.

Endovascular treatment for intracranial dissection

백승국

부산대 영상의학과

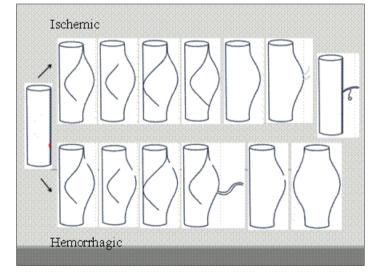
I. INDICATION

First of all, patients presenting with an SAH should be considered endovascular treatment, particularly those with intracranial artery dissections (IAD) in the posterior circulation. These patients should first undergo a diagnostic angiogram to assess for a direct cause of the hemorrhage, such as a pseudoaneurysm. The diagnostic angiogram would also study the collateral circulation, the length of the dissected segment, and vertebral dominance. Intracranial pseudoaneurysms have a reported mortality rate as high as 83% and a rerupture rate of approximately 40 - 70% within the first 24 hours of presentation. Occlusion of the entire dissected segment with or without flow replacement is the treatment option associated with the lowest risk of rehemorrhage. Although this could be achieved through proximal occlusion, trapping of the dissected segment might be a better option to avoid filling of the occluded segment through a retrograde flow from the contralateral vertebral artery. The procedure can be performed endovascularly, although in certain cases an open surgical approach might be preferable to visualize and preserve the PICA and brainstem perforators. In cases of ruptured vertebral artery dissection that extends to the basilar artery, treatment options are limited. These lesions are notoriously difficult to treat. If the patient passes the balloon test, occlusion and then a proximal occlusion of the basilar artery or bilateral occlusion of the vertebral arteries might be the best option. Otherwise, a stent-in-stent technique can be attempted with potential stent coiling of the pseudoaneurysm.

Another indication in which endovascular treatment is indicated in the acute setting is when dissection results in acute arterial occlusion. In these cases, hemodynamic compromise, and not thromboembolism, is the mechanism behind ischemia of cerebral tissue. In these patients, attempts can be consistent to restore flow. First, high-volume fluid resuscitation should be started to reach a normotensive state with a likely benefit of a slight hypertensive state. Once the patient is stabilized, an intervention to restore normal flow should be considered.

Other than these 2 indications, endovascular therapy should be considered if medical management fails or the patient has a contraindication to antithrombotic agents. Although no textbook definition of failure of medical therapy exists, it

is generally agreed that progression of neurologic symptoms and new ischemic events despite adequate antithrombotic therapy define failure of medical therapy. Whether pseudoaneurysm enlargement can be considered failure of medical therapy is controversial.

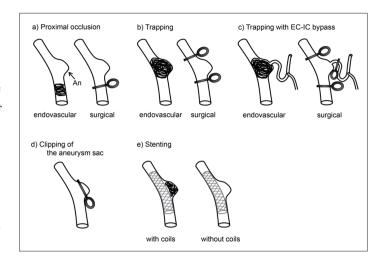

II. MANAGEMENT

Ischemic

Endovascular treatment is undertaken only in patients with recurrent ischemic symptoms despite receiving optimum medical treatment. Sometimes, endovascular treatment is undertaken if the dissecting aneurysm has increased in size, to prevent rupture, or more rarely to reduce signs of brainstem compression. In children, the preferred and widespread practice is surgical or endovascular treatment in patients with intracranial artery dissection with subarachnoid hemorrhage and those without subarachnoid hemorrhage and mass effect, whereas patients with intracranial artery dissection without subarachnoid hemorrhage and cerebral ischemia tend to be given medical treatment

Treatment options include intra-arterial thrombolysis, coils, and stents. Endovascular therapies are not only minimally

invasive but they offer the ability to both diagnose and treat patients within a single procedure and are thus being adopted into practice more broadly. By allowing for the direct delivery of thrombolytic agents at the site of dissection, intra-arterial thrombolysis is preferred to intravenous thrombolysis because it decreases the resulting dose requirements and reduces the risk of complications. Intra-arterial thrombolysis in conjunction with either a bypass or a stent has also been shown to be effective. Endovascular therapies include the deconstructive and reconstructive treatments. The details will be described below.



Hemorrhagic

Because of the risk of rebleeding and higher mortality, IAD in patients presenting with hemorrhage are treated more aggressively than those involving ischemia. Patients who are treated conservatively for SAH have been found to have poor clinical outcomes, resulting from frequent rebleeds. Ruptured dissections are unstable and have a tendency to rebleed. Studies on the treatment of posterior circulation IADs presenting with SAH report high mortality and poor outcomes. However, this situation is often confounded by the poor initial presentation and preexisting contraindications to more aggressive therapies.

Endovascular therapies include the deconstructive and reconstructive techniques including proximal occlusion, trapping with or without extracranial-intracranial (EC-IC) bypass, coiling of the aneurysm sac, stent-assisted coil embolization of the aneurysm including the use of flow diverters.

These options are individually chosen for patients based on vessel morphology and anatomy (i.e., the involvement of critical artery or perforating branches).

- 1. Parent artery occlusion (Fig. a, b, c) is a deconstructive technique in which blood flow into the dissected segment of the artery is stopped by occlusion either surgically or through an endovascular approach. Preferably, the dissected segment is occluded both proximally and distally to prevent rerupture through retrograde filling of a dissecting aneurysm. Parent artery occlusion has a risk of brain infarct in case of insufficient collateral supply. Before permanent occlusion, the collateral supply can be assessed with various methods.
- 2. Reconstruction (Fig. d, e) can be performed using flow diversion devices or stents to separate the true and false lumens. This strategy leads to a controlled thrombosis of the dissection or the dissecting aneurysm and preserves patency of the parent vessel, thereby preserving physiologic cerebral blood flow. In endovascular treatment, stent-assisted coiling can be used. Stenting of the dissected artery without any coiling by flow-diverter stents or conventional close-cell stents has been reported in small series; however, several days to months can pass before the dissecting aneurysm is thrombosed. Moreover, stenting needs dual antiplatelet treatment for several months after the procedure, thereby exposing patients to an increased risk of hemorrhagic complications.
- 3. Endovascular treatment of IAD is typically performed with coils and/or stent including flow diverters. However, in the certain cases such as peripheral located dissecting aneurysm or severe luminal narrowing within the diseased segment may preclude distal access for coiling or stenting. In this situation, a liquid embolic agent such as glue or Onyx may be helpful for traversing the stenosis and achieving parent artery occlusion or aneurysm obliteration.

References

- 1. Surgical Management of Intracranial Artery Dissection. Arimura K, *Iihara K.Neurol Med Chir* (Tokyo). 2016 Sep 15;56(9):517-23.
- 2. Updates in the Management of Cerebral Infarctions and Subarachnoid Hemorrhage Secondary to Intracranial Arterial

- Dissection: A Systematic Review.Al-Mufti F, Kamal N, Damodara N, Nuoman R, Gupta R, Alotaibi NM, Alkanaq A, El-Ghanem M, Keller IA, Schonfeld S, Gupta G, Roychowdhury S. *World Neurosurg*. 2019 Jan;121:51-58.
- 3. Spontaneous cervical and cerebral arterial dissections: diagnosis and management.Rahme RJ, Aoun SG, McClendon J Jr, El Ahmadieh TY, Bendok BR. *Neuroimaging Clin N Am.* 2013 Nov;23(4):661-71
- 4. Treatment of distal aneurysms of the cerebellar arteries by intraaneurysmal injection of glue. Cognard C, Weill A, Tovi M, Castaings L, Rey A, *Moret J.AJNR Am J Neuroradiol*. 1999 May;20(5):780-4.
- 5. Yamaura A, Yoshimoto T, Hashimoto N, Ono J: Nation- wide study of nontraumatic intracranial arterial dissection: clinical features and outcome. *Surgery for Cerebral Stroke* 26: 79–86, 1998 (Japanese)
- 6. Epidemiology, pathophysiology, diagnosis, and management of intracranial artery dissection. Debette S, Compter A, Labeyrie MA, et al. *Lancet Neurol*. 2015 Jun;14(6):640-54. doi: 10.1016/S1474-4422(15)00009-5. Review.
- 7. Dissecting aneurysms of intracranial carotid circulation. Ohkuma H, Suzuki S, Ogane K; Study Group of the Association of Cerebrovascular Disease in Tohoku, *Japan. Stroke*. 2002 Apr;33(4):941-7.
- 8. Novel use of onyx for treatment of intracranial vertebral artery dissection.Oh DC, Hirsch JA, Yoo AJ. *J Neurointerv Surg.* 2012 Jan 1;4(1):31-3. doi: 10.1136/jnis.2011.004952.
- 9. Dissecting aneurysms of the vertebral artery--angiographic patterns at the dissecting site on balloon test occlusion. Kai Y, Hamada J, Morioka M, *et al Neuroradiology*. 2012 Aug;54(8):857-62.
- 10. Dissecting aneurysms of the vertebrobasilar system. A comprehensive review on natural history and treatment options. Santos-Franco JA, Zenteno M, Lee A. Neurosurg Rev. 2008 Apr;31(2):131-40; discussion 140
- 11. Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial.CADISS trial investigators, Markus HS, Hayter E, Levi C, et al. *Lancet Neurol*. 2015 Apr;14(4):361-7
- 12. Endovascular management of extracranial carotid artery dissection achieved using stent angioplasty. Malek AM, Higashida RT, Phatouros CC, et al.. *AJNR Am J Neuroradiol*. 2000 Aug;21(7):1280-92

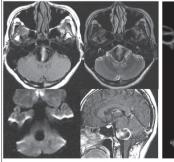
주성필

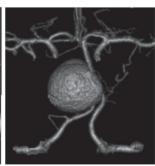
전남대

Complicated case

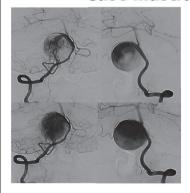
Sung-Pil Joo, Young-Han Cho, Yoo-Sub Kim, Tae-Sun Kim

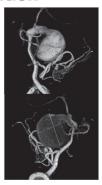
Department of Neurosurgery, Chonnam National University Hospital & Medical School

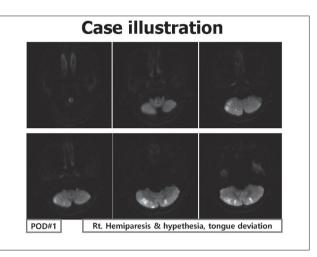

Case illustration

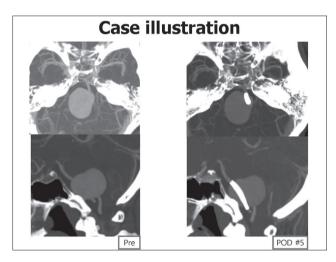

- A 27 year old girl
- C/C: dizziness
- N/E : Alert m/s Pupil 3+/3+ No motor weakness

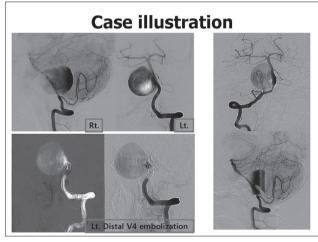
Higher cortical function: W.N.L.

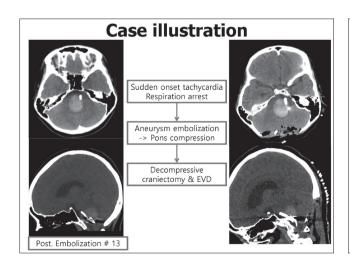

C.N. exam : W.N.L. Cbll sign : W.N.L.

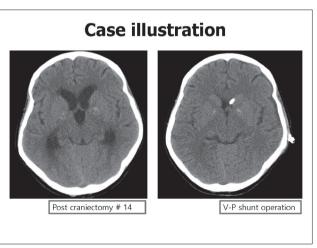

Case illustration

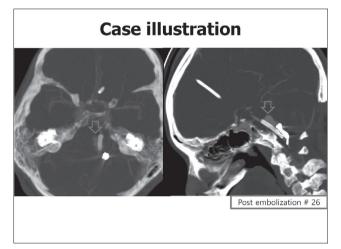



Case illustration









김성림

가톨릭대

이재일

부산대

Fibromuscular dysplasia (FMD) is a noninflammatory arterial disease with female dominancy. The arterial manifestrations could include dilatation, stenosis, dissection, aneurysm or vessel tortuosity. We reported an extremely rare case of subarachnoid hemorrhage caused by internal carotid artery (ICA) dissecting rupture in a patient with fibromuscular dysplasia.

A 38-year-old female was admitted to our neurointensive care unit with a history of sudden onset severe headache. A CT demonstrated subarachnoid hemorrhage at right sylvian fissure and basal cistern. A CT angiography showed tiny dilatation of right ICA communicating segment and left proximal ICA dissection. Conventional angiography confirmed right distal ICA dissection and Lt proximal ICA dissection with distal beads on a string sign. One day follow-up angiography revealed vessel wall remodeling, but we performed multiple stenting at dissecting segment considering risk of rebleeding. Double stenting facilitated dissecting flap reposition and reduced tiny dilatation portion. Seven days follow up angiography showed no further aneurysmal dilatation or in-stent stenosis and 3 months follow DSA confirmed complete obliteration of aneurysmal dilatation without stenosis.

We should consider FMD in young female patient with hypertension history and intracranial aneurysms or dissection. We also bring up the diagnosis and discussion of a cervico-encephalic artery and renal artery examination during the diagnostic work-up.

박중철

울산대

-	
<u> </u>	
-	

MEMO

대한뇌혈관내수술학회 | 대한뇌혈관외과학회

SKEN-KSCVS 합동 연수강좌

인쇄2019년 9월 4일발행2019년 9월 7일

발 행 처 대한뇌혈관내수술학회

 회
 장
 고준석

 총무이사
 신승훈

 학술이사
 장철훈

소 서울시 서초구 서초대로 350 (서초동 동아빌라트 2타운) 407호


제 작 엘에스커뮤니케이션즈

소 서울특별시 동대문구 천호대로85길 17 압구정빌딩 6층

TEL) 02) 476-6718

Consistently smooth deployment and stability, for the high performance you expect.

Target Hemorrhagic Solutions

Smooth and stable.

THIS DOCUMENT IS INTENDED SOLELY FOR THE USE OF HEALTHCARE PROFESSIONALS.

A physician must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. Stryker does not dispense medical advice and recommends that physicians be trained in the use of any particular product before using it in a procedure. The information presented is intended to demonstrate the breadth of Stryker product offerings. A physician must always refer to the package insert, product label and/or instructions for use before using any Stryker product. Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your Stryker products if you have questions about the availability of Stryker products in your area. The Stryker products listed above are CE marked according to the Medical Device Directive 93/42/EEC.

Australian Sponsor Address Stryker Australia Pty Ltd

Stryker Neurovascular Fremont, CA 94538

strykerneurovascular.com

Date of Release: MAY/2018

EX_EN_IL

Intraluminal Advancements

