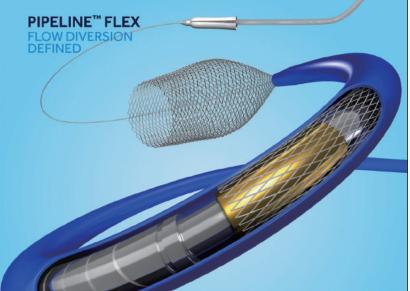


"낮부터 밤까지 최선의 노력과 정성을"

대한뇌혈관내수술학회 정기학술대회 및 총회


2017. 12. 2. (토)

수원 노보텔 앰베서더호텔 2층 샴페인홀

최 | 대한뇌혈관내수술학회 주 관 | 대한신경외과학연구재단

EVOLVING STROKE CARE TOGETHER.

Medtronic Further, Together

CARD-1195239-0011 01/201

"낮부터 밤까지 최선의 노력과 정성을"

대한뇌혈관내수술학회 정기학술대회 및 총회

2017. 12. 2. (토)

수원 노보텔 앰베서더호텔 2층 샴페인홀

모시는 글

존경하옵는 회원 여러분, 안녕하십니까?

2017년은 우리 대한뇌혈관내수술학회가 창립 20주년을 기념하면서 새로운 도약을 약속한 첫 해로서 한 해의 마무리와 함께 개최되는 본 정기학술대회는 학회의 가장 큰 행사 중 하나입니다. 최근에는 모든 학회가 주제(theme)를 내세우는데, 이번에는 우리 모두의 "일상"을 솔직히 담고 싶었습니다. 모두가 삶의 질을 말하면서 쉽고 위험부담이 적은 일을 찾는 이 시대에, 최단시간 안에 뇌혈

관질환 환자들을 치료하고자 모든 팀원이 똘똘 뭉쳐 밤낮으로 뛰고 있는 우리의 "일상"을 널리 알리면서, 서로를 따뜻이 격려해 드릴 수 있는 말은 없을까? 오랜 생각 끝에 결정된 주제가 "낮부터 밤까지 최선의 노력과 정성을" 입니다. 끊임없이 흐르는 한강의 물줄기는 우리가 치료하는 모든 환자분들의 안정적인 뇌혈류를, 밤낮으로 변하는 하늘색과 구름의 모습은 우리가 치료하면서 접하는 모든 예상치 못한 상황을 의미할 수도 있다고 생각됩니다. 이제 우리는 학술대회의 공간을 통해 이 모든 상황을 뚫고 우리가 기울였던 노력과 정성을 서로 공유학으로써. 최선의 결과를 약속 받고자 합니다.

금번 학술대회에서는 흔히 사용되는 각종 기구/기계의 특성, 합병증을 유발할 수 있는 뇌혈관 위험 문합 (dangerous anastomosis), 근거중심의학 논문 이해의 핵심인 각종 통계기법 및 의료 소송 대응법 등 우리가 꼭 알고 있어야 할 내용들을 준비했습니다. 장비에서 술기, 결과물 산출 및 대비까지 회원분들의 궁금증 해소에 조금이라도 도움이 되었으면 좋겠습니다.

또한 2018-19년을 이끌어 주실 신임 회장님과 집행부가 본 학회를 마침과 동시에 출범하게 됩니다. 훨씬 훌륭하고 탄탄한 학회로 발전시켜 주실 것을 믿어 의심치 않으며, 새로운 출발을 약속하는 이 뜻깊은 자리에 꼭 참석하시어 자리를 빛내 주십시오.

대단히 감사합니다.

2017년 11월

대한뇌혈관내수술학회 회장 성재훈 올림

2016~2017 대한뇌혈관내수술학회 임원진

명예회장

직 위	성 명	소 속		
명예회장	백민우	인봉의료재단 뉴고려병원		

회장

직 위	성 명	소 속		
회장	성재훈	가톨릭대학교 성빈센트병원		

상임이사

직 위	 성 명	소 속		
총무	유승훈	울산대학교 강릉아산병원		
학술	정진영	동의의료원		
기획	고준석	경희대학교 강동병원		
재무	장철훈	영남대학교병원		
간행	김성림	가톨릭대학교 부천성모병원		
진료지침	강현승	서울대학교병원		
보험	박석규	순천향대학교 서울병원		
인증의	이호국	한림대학교 강남성심병원		
국제교류	윤석만	순천향대학교 천안병원		
대외협력	이형중	한양대학교병원		
회원관리	강희인	을지의과대학 을지병원		
홍보	신승훈	대진의료재단 분당제생병원		
전산정보				
수련교육	수련교육 권순찬 울산대학교병원			
연보/역사 김태곤 차의과대학교 분당차병원				
다기관연구	장인복	한림대학교 성심병원		
회칙개정	임용철	아주대학교병원		
법제윤리	김대원	원광대학교병원		
지회대표(광주/전라)	김태선	전남대학교병원		
지회대표(대구/경북)	김문철	에스포항병원		
지회대표(대전/충청)	이형진	가톨릭대학교 대전성모병원		
지회대표(부산/울산/경남)	권순찬	울산대학교병원		
감사	권현조	충남대학교병원		
간사	김훈	가톨릭대학교 부천성모병원		

2016~2017 대한뇌혈관내수술학회 임원진

전임회장단

직 위	성 명	소 속
초대, 제2대	백민우	인봉의료재단 뉴고려병원
제3대	제3대 김영준 단국대학교병원	
제4, 5대	권도훈	울산대학교 서울아산병원
제6대	안성기(작고)	(전) 한림대학교 성심병원
제7대	신용삼	가톨릭대학교 서울성모병원
제8대 권오기		분당서울대학교병원
제9대	김범태	순천향대학교 부천병원

운영위원

직 위	성 명	소 속		
 총무	김훈	가톨릭대학교 부천성모병원		
 학술	이재일	부산대학교병원		
익골	박근영	연세대학교 세브란스병원		
재무	김종훈	영남대학교병원		
간행	현행 편집위원회			
인증의	김영우	가톨릭대학교 부천성모병원		
	신동성	순천향대학교 부천병원		
인증의	신희섭	경희대학교 강동병원		
	최종일	한림대학교 강남성심병원		
 국제교류	조준성	단국대학교병원		
녹세╨큐	이종영	한림대학교 강동성심병원		
수련교육	윤원기	가톨릭대학교 성바오로병원		
十七	최재형	동아대학교병원		
보험	정준호	연세대학교 강남세브란스병원		
工品	김창현	계명대학교 동산의료원		
저사저ㅂ	신동성	순천향대학교 부천병원		
전산정보	김명진	가천대학교 길병원		
다기관연구	심유식	인하대학교병원		

프로그램

08:30-08:45	Registration			
08:45-09:00	Opening remark	대한뇌혈관내수술학회 회장 성	재훈	
	Congratulatory remark	대한신경외과학회 이사장 징	진우	
09:00-10:40	Free paper Aneurysm	좌장 : 한림대 이호국 , 영남대 징	철훈	
09:00-09:10	Long-term results of endovascular treatment with preservation	n of the vertebral artery		
	in isolated dissecting aneurysms of the posterior inferior cerek	oellar artery 천안충무병원 징	이욱	• 11
09:10-09:20	Antiplatelet premedication for stent-assisted coil embolization	of intracranial aneurysms:		
	Low-dose Prasugrel vs. Clopidogrel	동국대 초	현호	• 12
09:20-09:30	Relevance of antiplatelet therapy duration after stent-assisted	coil embolization for		
	unruptured intracranial aneurysms	서울대 김	택균	• 13
09:30-09:40	Low-profile visualized intraluminal support junior (LVIS-Jr) Y-	stenting for coiling of		
	wide-neck bifurcation aneurysms	연세대 빅	l근영	• 14
09:40-09:50	Endovascular coiling of aneurysm remnants after clipping	고려대 정	용수	• 15
09:50-10:00	Progressive occlusion of small saccular aneurysms incomplete	ely occluded after stent-assiste	d	
	coil embolization: Analysis of related factors and long-term or	utcomes 서울대 조	영대	• 16
10:00-10:10	Long-term outcomes of patients with stent tips embedded into	o internal carotid		
	artery branches during aneurysm coiling	서울대 빈	승필	• 17
10:10-10:20	Intraprocedural rupture during endovascular treatment of intra	cranial saccular aneurysm		
		한양대 빅	영기	• 18
10:20-10:30	Intraprocedural rerupture(IPR) management of intracranial ane	urysm during coil		
	embolization by manual CCA compression	영남대 김	종훈	• 19
10:30-10:40	In-depth analysis of the judicial precedents for the peri-proce	edural mortality of		
	unruptured aneurysms	순천향대 김	범태	• 20
10:40-11:00	Coffee break			

"낮부터 밤까지 최선의 노력과 정성을"

2017 대한뇌혈관내수술학회 정기학술대회 및 총회

2017. 12. 2. (토) 수원 노보텔 앰베서더호텔 2층 샴페인홀

11:00-12:00	Special lecture	좌장 : 가톨릭대 성재훈	
11:00-11:30	의학논문의 각종통계 - 나는 제대로 읽고 이해하고 있는가?	가톨릭대 피부과 배정민	• 22
11:30-12:00	Dangerous anastomosis: Clinical revelations	연세대 영상의학과 김동준	• 36
12:00-13:00	Lunch		
	의료사고 및 법적 문제발생 시 대응방법	법무법인 지평 강호정	• 38
13:00-14:00	Symposium: Review of endovascular devices		
	<u> </u>	장 : 순천향대 김범태, 서울대 권오기	
13:00-13:20	Stroke devices	가톨릭대 박상규	• 42
13:20-13:40	Overview of detachable coils	한림대 전홍준	• 52
13:40-14:00	Stent for aneurysm coiling	연세대 정준호	• 68
14:00-15:20	Free paper Ischemia	좌장 : 전남대 김태선, 한양대 이형중	
14:00-14:10	Clinical implications of arterial Spin-labeling(ASL) MR compared	with single-photon emission	
	computed tomography(SPECT) in patients with intracranial occlus	sive disease 순천향대 신동성	• 73
14:10-14:20	Collateral status affects the onset-to-reperfusion time window fo	r good outcome 연세대 김병문	• 74
14:20-14:30	Predictive value of CT angiography-determined occlusion type i	n stent retriever thrombectomy	
		연세대 김병문	• 75
14:30-14:40	Differentiation between brain hemorrhage and contrast medium a	after intra-arterial treatment	
	in acute ischemic stroke using spectral detector-based CT	고려대 진성원	• 76
14:40-14:50	A useful diagnostic method to reduce the in-hospital time delay	for mechanical thrombectomy:	
	Volume perfusion computed tomography with added vessel reco	onstruction 가톨릭대 이호준	• 77
14:50-15:00	Clinical manifestations of isolated chronic middle cerebral artery	occlusion in relation to	
	angiographic features	경희대 신희섭	• 78
15:00-15:10	Combined stent-retriever plus aspiration thrombectomy for acute	e ischemic stroke	
	and its clinical efficacy	명지병원 허 원	• 79
15:10-15:20	Combined aspiration and stent retriever technique for large vess	el occlusion	
	using intermediate catheter (SOFIA)	동의의료원 정진영	• 80

프로그램

15:20-16:30	Free paper AVM/AVF etc	좌장 : 경희대 고준석 , 순천향대 윤석만	
15:20-15:30	Proximal coil-protected embolization for cranial and spinal shu	nt diseases	
	with N-butyl cyanoacrylate or Onyx	연세대 김병문	• 83
15:30-15:40	Endovascular stenting for symptomatic carotid dissection with I	nemodynamic insufficiency	
		부산대 신태희	• 84
15:40-15:50	Transarterial balloon-assisted Onyx embolization of intracranial	arteriovenous malformations	
	using a dual-lumen balloon microcatheter: Two case reports	차의과학대 김태곤	• 85
15:50-16:00	Transcervical access via direct neck exposure for neuro-inter-	ventional procedures	
	at the hybrid angiosuite	한림대 전홍준	• 86
16:00-16:10	Does cervical sagittal balance affect a vascular tortuosity and	spontaneous cervical artery	
	dissection without connective tissue disease?	강원대 전효섭	• 87
16:10-16:20	Usefulness of intraoperative neurophysiologic monitoring during	g endovascular treatment	
	for intracranial vascular lesions	순천향대 심재현	• 88
16:20-16:30	Intracranial mirror aneurysms: Anatomic characteristics and treat	atment options 서울대 조영대	• 89
16:30-16:50	Coffee break		
16:50-17:20	총회		
17:12-17:30	Academic award ceremony		
17:30	Closing remarks		
18:00	Official dinner		

2017 대한뇌혈관내수술학회 정기학술대회 및 총회

Free paper | Aneurysm

좌장 : 한림대 **이호국**, 영남대 **장철훈**

Long-term Results of Endovascular Treatment with Preservation of the Vertebral Artery in Isolated Dissecting Aneurysms of the Posterior Inferior Cerebellar Artery

장 이 욱 천안충무병원

E-Wook Jang, Byung-Hee Lee

Cerebrovascular Center, Cheonan Chungmu Hospital, Cheonan, Korea

Objective: The endovascular treatment of aneurysm of the posterior inferior cerebellar artery(PICA) is challenged by small size, tortuous vessels, brainstem perforators, and fragility of the sac. Aggressive treatment by sacrificing the vertebral artery increases the probability of ischemic complications. We report favorable outcomes of endovascular treatment with preservation of the vertebral artery avoiding ischemic complication of medulla.

Methods: Twelve patients (mean age: 47.5 ± 15.7 years, M: F = 5:7) with isolated PICA aneurysms were treated by endovascular techniques from 2005 to 2016. Clinical features of acute subarachnoid hemorrhage were presented in nine patients, ischemia in two patients and headache in one patient. Selective occlusion at PICA origin or target lesion was determined by the balloon occlusion test of vertebral artery as a predictive inspection of the preservation of PICA by collaterals

Result: Endovascular treatment was successful in all patients with complete occlusion of the aneurysm and preservation of PICA flow at the final postprocedural angiogram. One patient developed ipsilateral PICA territory infarction two days after PICA occlusion using coils but fully recovered at discharge. Angiographic follow—up showed total occlusion of aneurysms with well preserved PICA flow by collaterals in all patients. There was no newly developed neurologic event or rebleeding during clinical follow—up periods (mean: 41±13,4 months).

Conclusion: Selective occlusion located at the origin of PICA or near to the aneurysm using preprocedural occlusion test may show favorable results without sacrificing of vertebral artery in preventing recanalization and rebleeding of isolated dissecting PICA aneurysms.

Antiplatelet Premedication for Stent-assisted Coil Embolization of Intracranial Aneurysms: Low-dose Prasugrel vs. Clopidogrel

최 현 호 동국대 일산병원

Hyun Ho Choi¹, Young Dae Cho², Moon Hee Han^{2,3}, Won—Sang Cho³, Jeong Eun Kim³, Hyun—Seung Kang³

¹Department of Neurosurgery, Dongkuk University Hospital, Dongkuk University College of Medicine, Ilsan, Korea

²Department of Radiology, ³Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea

Objective: The use of antiplatelet medications to prevent thrombosis in the treatment of cerebral aneurysms with stents has become widely emphasized. We compared low-dose prasugrel with clopidogrel in stent-assisted coil embolization of intracranial aneurysms.

Methods: This is a retrospective review of 311 aneurysms from 297 patients who underwent stent-assisted endovascular coil embolization of unruptured intracranial aneurysm between November 2014 and March 2017. Thromboembolic and hemorrhagic adverse events were compared between 207 patients who received low-dose prasugrel (PSG group) and 90 patients who received clopidogrel (CPG group).

Result : P2Y12 reaction unit (PRU) values were significantly lower in the PSG group (PSG group vs. CPG group, 132,3 \pm 76.9 vs. 238.1 \pm 69.1; P \langle 0.001); the percentage of inhibition was also statistically higher in the PSG group (54.0 \pm 26.0% vs. 20.8 \pm 18.6%; P \langle 0.001). Thromboembolic events occurred less frequently in the PSG group than in the CPG group (0.9% vs. 6.4%; P = 0.01), whereas there was no significant difference in the percentage of hemorrhagic complications (0.5% vs. 2.2%; P = 0.22). In the multivariate analysis, clopidogrel as the antiplatelet medication was the sole significant risk factor for thromboembolism in this series of patients undergoing stent—assisted coil embolization.

Conclusion: Use of low-dose PSG as an antiplatelet premedication is quick, effective, and safe for stent-assisted coil embolization of unruptured intracranial aneurysms. Prasugrel premedication significantly lowered the frequency of thromboembolic events without increasing the risk of hemorrhage.

Relevance of Antiplatelet Therapy Duration after Stentassisted Coil Embolization for Unruptured Intracranial **Aneurysms**

택 균 분당서울대병원

Tackeun Kim^{1,2}, Chang Hyeun Kim³, Si-Hyuck Kang^{2,4}, Min Jai Cho^{1,2}, Seung Pil Ban^{1,2}, O-Ki Kwon^{1,2}

¹Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea

Objective: The optimal duration of dual antiplatelet therapy (DAPT) for preventing delayed thromboembolic events (DTEs) remains unclear. We aimed to determine whether longer DAPT provides improved protection against delayed DTEs.

Methods: We performed a retrospective cohort study of 507 stent-assisted coil embolization procedures using a single stent for unruptured intracranial aneurysms. We performed coarsened exact matching according to the duration of maintenance DAPT. DTEs were defined as any neurologic symptoms concerning the stented vascular territory and occurring at 1 month or later after the procedure, After stratification, according DAPT duration (short-term, long-term, ≥9 months), the log-rank test and Z-analysis were performed to evaluate the efficacy of long-term DAPT for preventing DTEs.

Result: Of 507 treated patients followed-up for a median of 44 months, 25 (4,9%) experienced DTEs at 1 month after the procedure. Among all DTEs, 9 (1.8%) were infarctions confirmed on magnetic resonance imaging. Permanent neurologic deficit (modified Rankin Scale score ≥2) occurred in 2 (0.4%) patients, In procedure-to-event analysis, long-term DAPT was not superior for preventing DTEs. Most events occurred within 1 month of switching from DAPT to single antiplatelet therapy, regardless of DAPT duration. The longest time from the procedure to DTE occurrence was 22 months. Prevalence of hypertension was significantly higher among patients who experienced DTEs.

Conclusion: Compared with short-term DAPT, long-term DAPT delays the occurrence of DTEs but does not lower their incidence. Longer-term DAPT (over 9 months) should be considered after stent-assisted coil embolization for unruptured intracranial aneurysms, and future studies elucidating the efficacy of such long-term DAPT are warranted.

Seoul National University College of Medicine, Seoul, Korea

Department of Neurosurgery, Pusan National University Yangsan Hospital, Yangsan, Korea

Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam, Korea

Low-profile Visualized Intraluminal Support Junior (LVIS-Jr) Y-stenting for Coiling of Wide-neck Bifurcation Aneurysms

박 근 영 연세대 세브란스병원

Keun Young Park^{1,2}, Byung Moon Kim², Dong Joon Kim², Joonho Chung¹, Jae Hwan Lee¹ Department of Neurosurgery, ²Radiology, Severance Hospital Stroke Center, Yonsei University College of Medicine, Seoul, Korea

Objective: The purpose of this study is to evaluate the feasibility and durability of a low-profile visualized intraluminal support junior (LVIS-Jr) Y-stenting for coiling of wide-neck bifurcation aneurysms.

Methods: LVIS-Jr Y-stenting was attempted in 24 patients (mean age, 60 ± 12 years; M:F=8:16) with 24 wide-neck bifurcation aneurysms (3 ruptured and 21 unruptured): 11 basilar artery top, 6 anterior communicating artery, 4 middle cerebral artery bifurcation aneurysms, 1 internal carotid artery (ICA) bifurcation, 1 vertebrovasilar fenestration, and 1 traumatic pseudoaneurysm at anterior cerebral artery A2 segment. The mean dome and neck size were 8.1mm \pm 2.9mm and 5.7mm \pm 2.0mm, respectively. Procedural success rate, treatment-related morbidity, and clinical and angiographic outcomes were retrospectively assessed.

Result: All attempts of Y-stenting were successful. Treatment-related morbidity occurred in 1 (4.2%), resulting in modified Rankin Scale (mRS) 2. Immediate post-procedural angiograms showed complete occlusion in 66,7% and neck remnant in 33,3%. Except for 1 patient who died from initial subarachnoid hemorrhage, all patients had good (mRS, 0-2) outcome at clinical follow-up for a mean of 12 months (range, 6 - 27 months); mRS 0 in 22, mRS 1 in 1, and mRS 2 in 1 patient, respectively. Follow-up vascular imaging was available in 20 (83,3%) for a mean of 7.5 months (range, 4 - 16 months). All 20 aneurysms showed complete occlusion at follow-up.

Conclusion: LVIS-Jr Y-stenting seemed feasible and to provide durable occlusion for wide-neck bifurcation aneurysms.

Endovascular Coiling of Aneurysm Remnants after Clipping

정 용 수 고려대 안산병원

Yong-Su Chung, Sung-Kon Ha, Sung-Won Jin, Dong-Jun Lim, Se-Hoon Kim

Department of Neurosurgery, Ansan Hospital, Korea University Medical Center, Ansan, Korea

Objective: The vast majority of intracranial aneurysms can be obliterated completely with surgical clipping. However, postoperative remnants occur in about 4 to 8% of patients who undergo postoperative angiography. We present three cases of endovascular treatment for remnant aneurysm after incomplete clipping.

Methods: Three aneurysm remnants after surgical clipping were treated with endovascular embolization using GDC. All aneurysms were ruptured and located in the anterior circulation, two at the anterior communicating artery and one at the middle cerebral artery bifurcation. Two remnants were found on the first week after craniotomy and one on the 6 months after surgery.

Result: All endovascular procedures were successfully performed with simple endovascular coiling techniques. There were no procedural complications with endovascular techniques.

Conclusion: Our experience confirms the feasibility and relative safety of this treatment strategy that may be considered a valid alternative to re—craniotomy for remnant aneurysm after clipping.

Progressive Occlusion of Small Saccular Aneurysms Incompletely Occluded after Stent-assisted Coil Embolization: Analysis of Related Factors and Long-term Outcomes

조 영 대 서울대병원

Young Dae Cho, Jeongjun Lee, Hyun-Seung Kang, Moon Hee Han

Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea

Objective: Incompletely occluded aneurysms in coil embolization are subject to recanalization but occasionally progress to a totally occluded state. Deployed stents may actually promote thrombosis of coiled aneurysms. We evaluated outcomes of small aneurysms

Methods: Between September, 2012 and June, 2016, a total of 463 intracranial aneurysms were treated by stent-assisted coil embolization. Of these, 132 small saccular aneurysms displayed saccular filling with contrast in the immediate aftermath of coiling. Progressive thrombosis was defined as complete aneurysmal occlusion at the 6-month follow-up point. Rates of progressive occlusion and factors predisposing to this end were analyzed via binary logistic regression.

Result : In 101 (76.5%) of 132 intracranial aneurysms, complete occlusion was observed in follow-up imaging studies at 6 months. Binary logistic regression analysis indicated that progressive occlusion was linked to smaller neck diameter (OR=1.533; p=0.003), hyperlipidemia (OR=3.329; p=0.036) and stent type (p=0.031). The LVIS stent is especially susceptible to progressive thrombosis, more so than Neuroform (OR=0.098; p=0.008) or Enterprise (OR=0.317; p=0.098) stents. In 57 instances of progressive thrombosis, followed for \geq 12 months (mean, 25.0±10.7 months), 56 (98.2%) were stable, with minor recanalization noted once (1.8%) and no major recanalizations.

Conclusion: Aneurysms associated with smaller diameter necks, hyperlipidemic states, and LVIS stent deployment may be inclined to eventually thrombose, if occlusion immediately after stent-assisted coil embolization is incomplete. In such instances, excellent long-term durability is anticipated.

Long-term Outcomes of Patients with Stent Tips Embedded into Internal Carotid Artery Branches during Aneurysm Coiling

반 승 필 분당서울대병원

Seung Pil Ban, O-Ki Kwon, Si Un Lee, Jae Seung Bang, Chang Wan Oh, Hyun Jean Jeong, Min Jai Cho, Eun-A Jeong, Tackeun Kim

Departments of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, Korea

Objective: During stent-assisted coiling (SAC) for internal carotid artery (ICA) aneurysms, stent tips are sometimes unintentionally embedded into ICA branches. Stent tips can be visualized because they have radiopaque markers. Concerns regarding stent tip misplacement include risks of artery perforation and occlusion. The aim of this study was to evaluate the long-term outcomes of ICA branches with embedded stent tips.

Methods: ICA branches with embedded stent tips were identified among 35 patients with unruptured ICA aneurysms treated using SAC between November 2003 and November 2014. Patient clinical and angiographic outcomes associated with the embedded stent tip were analyzed.

Result : The majority of the 35 studied aneurysms were paraclinoid ICA aneurysms (n = 30). The most commonly involved ICA branch was the posterior communicating artery (26 patients, 74.3%), followed by the anterior choroidal artery (8 patients, 22.9%) and ophthalmic artery (1 patient, 2.9%). During the follow-up period (38.6 \pm 17.9 months), no new neurological deficits developed. Neither hemorrhagic nor thromboembolic events occurred. Angiography was performed during the final follow-up evaluation, at a mean of 32.7 \pm 18.0 months, and all ICA branches with embedded stent tips showed patent blood flow without severe luminal narrowing.

Conclusion: Placement of a stent tip into ICA branches during SAC appears to be safe.

Intraprocedural Rupture during Endovascular Treatment of Intracranial Saccular Aneurysm

박 영 기 한양대병원

박영기, 최규선, 이형중

한양대 서울병원 신경외과

Objective: Intraprocedural rupture (IPR) is the most dangerous complication during endovascular treatment of aneurysm. This study aimed to evaluate the rate and risk factor of IPR during endovascular treatment of intracranial saccular aneurysm.

Methods: Patients who received endovascular treatment of intracranial saccular aneurysm in single institution between 2010 and 2016 were retrospectively reviewed. Eighty ruptured and 155 un-ruptured saccular aneurysm was enrolled in study. Demographic factors, aneurysm location, treatment method (simple coil or adjunctive) and aneurysm morphology was reviewed.

Result : Rate of IPR was 7.5% (6/80) in ruptured aneurysm and 2.5% (4/155) in un-ruptured aneurysm patients, respectively. IPR occurred at ACoA (ruptured N=5, un-ruptured N=2), PCoA (un-ruptured N=1), MCA (un-ruptured N=1) and basilar top (ruptured N=1), respectively. The most common cause of IPR was by first framing coil embolization (6/10). Independent risk factor for IPR in saccular aneurysm was ACoA (OR 9.07; 95% CI 2.33-44.75; p=0.0025) and aneurysm size (OR 0.62; 95% CI 0.36-0.94; p=0.0466).

Conclusion: ACoA and small size aneurysm seems to be the risk factor for IPR during endovascular treatment. Gentle manipulation of microcatheter and precaution during first coiling is needed to avoid IPR.

Intraprocedural Rerupture(IPR) Management of Intracranial Aneurysm during Coil Embolization by Manual CCA Compression

김 종 후 영남대병원

Jong Hoon Kim, Young Jin Jung, Chul Hoon Chang

Department of Neurosurgery, Yeungnam University Medical Center, Daegu, Korea

Objective: Incidence of intraprocedural rerupture (IPR) during endovascular coiling of intracranial aneurysms is relatively low. But, IPR of intracranial aneurysms during coil embolization is associated with significant periprocedural disability and death. We report several cases of IPR management during coil embolization by manual CCA compression.

Methods: Between January 2016 and November 2017, 324 patients were treated with endovascular therapy for unruptured and ruptured intracranial aneurysm. Among them, we had experienced 3 cases of IPR management by CCA compression, recently.

Result: Among the 3 patients, there were 2 anterior communicating artery aneurysms, and 1 internal carotid artery aneurysm. In all cases, simultaneously, rapid CCA compression and aneurysm occlusion at the point of suspected IPR was performed, and final angiography showed complete obliteration of the aneurysm. After the procedure, there were no neurologic deterioration in all cases.

Conclusion: Early IPR detection followed by rapid manual CCA compression and aneurysm occlusion can lead to a benign clinical course in most cases.

In-depth Analysis of the Judicial Precedents for the Periprocedural Mortality of Unruptured Aneurysms

김 범 태 순천향대 부천병원

Bum-Tae Kim

Department of Neurosurgery, Soonchunhayng University Bucheon Hospital, Bucheon, Korea

Objective: In the coil embolization (CE) for the unruptured intracranial aneurysms (UIAs), 0.1~0.5% peri-procedural mortality has been reported. It may influence/increase the medicolegal suits.

Methods: Author have reviewed the published judicial precedents for the peri-procedural mortality from the court. I have performed an in-depth analysis for these UIA cases and discuss the preventive view points.

Results (Case presentation): Case 1. During CE for the lobulated MCA aneurysm, intra-procedural rupture (IPR) has been occurred. Emergent operation and active care were performed for the cerebral hemorrhage. The court criticized the manipulation of microcatheter and microwire into the aneurysm sac, however, they agreed with proper management of post procedural complications.

Case 2. CE has been performed for the wide neck MCA aneurysm. During the stent deployment, IPR has been occurred. Reversal of anticoagulant and stent assist coil embolization have been continued. However, MCA occlusion was found and mortality has been occurred. The court criticized the procedures but agreed with the duty explanation for patient himself.

Case 3. CE has been performed for the ICA aneurysm. Coil migration has been occurred and it was retrieved finally. However, diffuse subarachnoid hemorrhage has been found after CE. The court criticized the technical errors and excessive manipulations,

Conclusion: According to the in-depth analysis for the judicial precedents, we may understand the judges had information for the detailed CE procedures of microwire works, tension of microcatheters, size of coil selections and justify/decide whether the CE procedure was correct. We know the court ask the operator has a responsibility for the duty explanation not only patient's family but patient him/herself.

2017 대한뇌혈관내수술학회 정기학술대회 및 총회

Special lecture

좌장: 가톨릭대 **성재훈**

의학논문의 각종통계 - 나는 제대로 읽고 이해하고 있는가? 가톨릭대 피부과 배정민

> Dangerous anastomosis: Clinical revelations 연세대 영상의학과 김동준

> > 의료사고 및 법적 문제발생 시 대응방법 법무법인 지평 강호정

배 정 민 가톨릭대학교 성빈센트병원 피부과

▶ 학력

2004. 2.가톨릭대학교 의과대학 의학과 졸업2015. 8.가톨릭대학교 의과대학 대학원 의학박사

▶ 경력

2004. 3.-2009. 2. 가톨릭중앙의료원 인턴 및 피부과 전공의

2009. 5.-2012. 4. 국군일동병원 군의관

2012, 5.-2013, 2. 연세대학교 세브란스병원 피부과 임상강사

2013. 3.-2017. 2. 가톨릭대학교 성빈센트병원 피부과 임상강사 및 임상조교수

2017. 3.-현재 가톨릭대학교 성빈센트병원 피부과 조교수

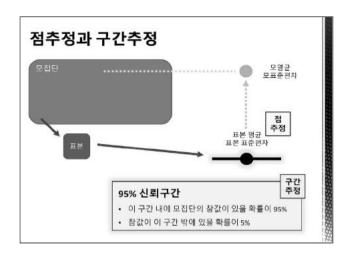
▶ 학회활동

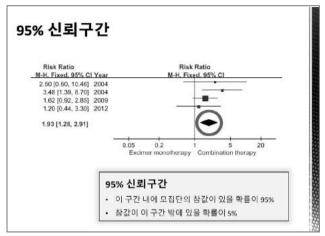
대한피부과학회 정회원 대한백반증학회 대외협력이사

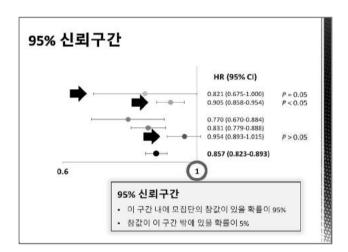
의학논문의 각종통계 - 나는 제대로 읽고 이해하고 있는가?

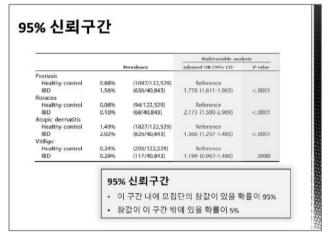
배 정 민

가톨릭대 피부과

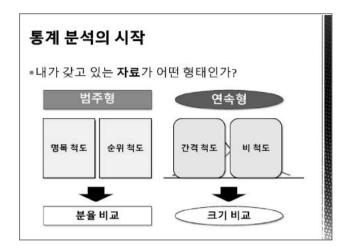

의학논문의 각종통계 나는 제대로 읽고 이해하고 있는가 가톨릭의대 피부과 배정 민

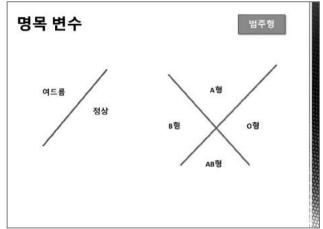

의료인에게 필요한 통계지식

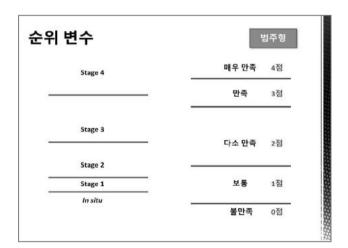

- · 각 통계기범의 수학적 증명
- · 각 검정통계량의 계산식 암기
- 자료에 적합한 통계기법의 올바른 선택
- 통계 프로그램의 올바른 활용
- 결과의 올바른 해석
- 의학 통계의 기본 개념 이해

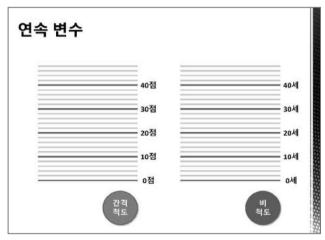


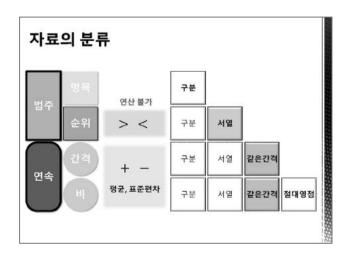


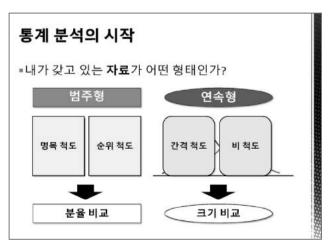


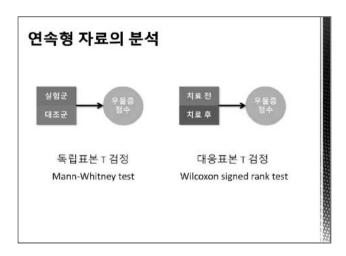


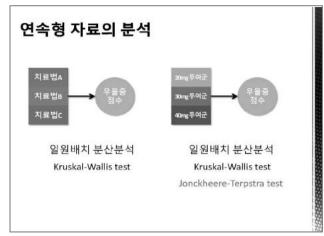


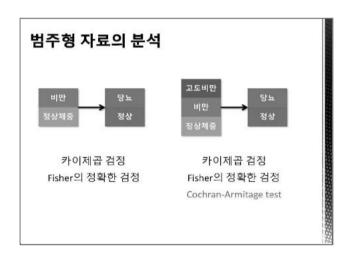


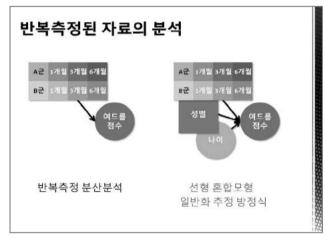


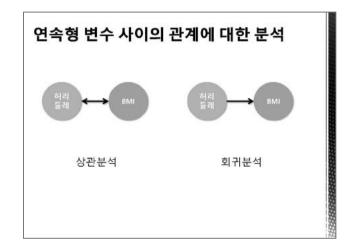


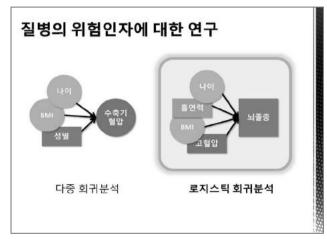


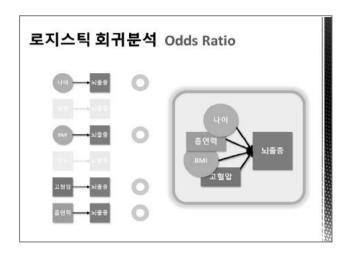


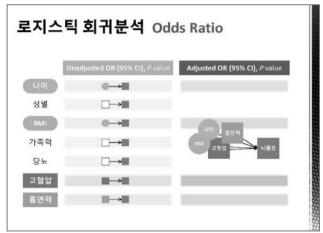


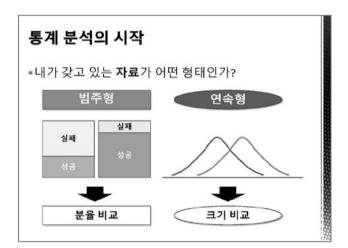


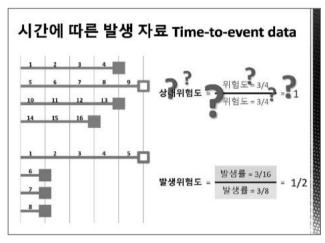


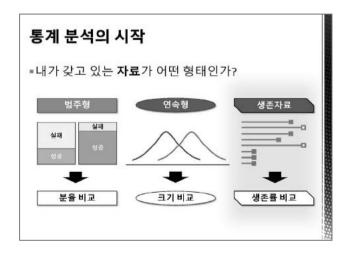


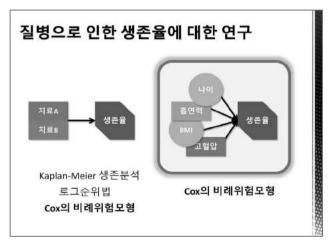


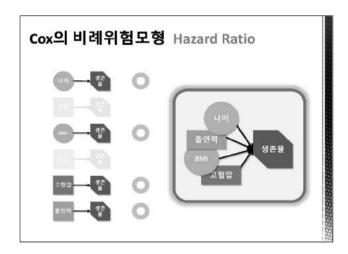


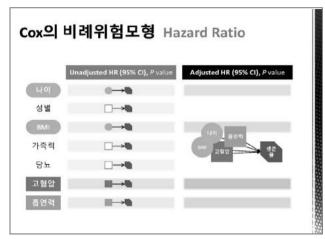


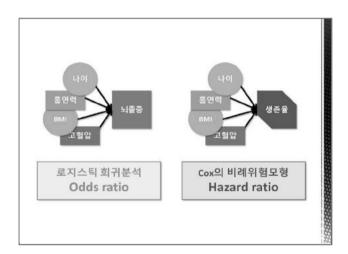


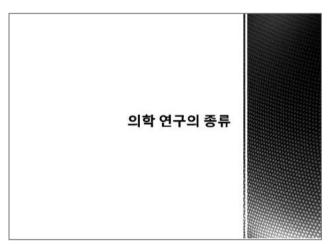


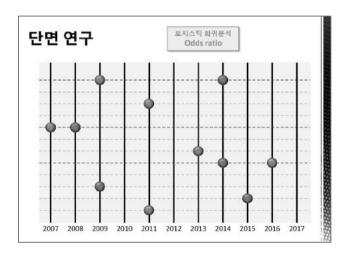


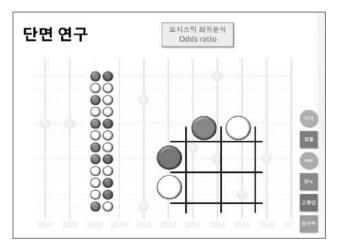


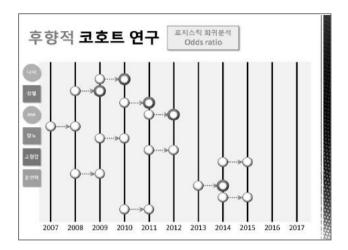


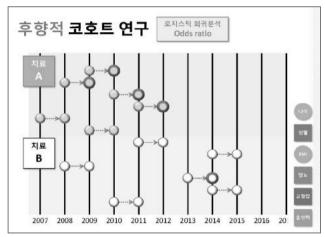


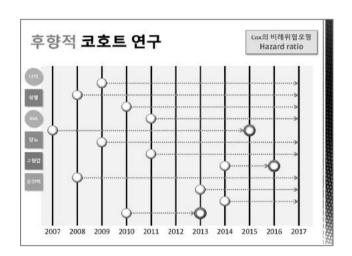


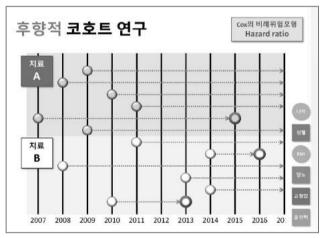


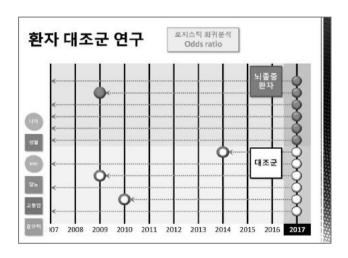


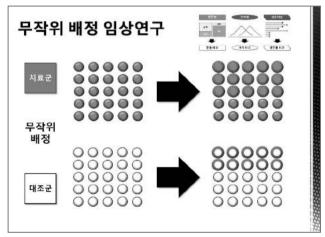


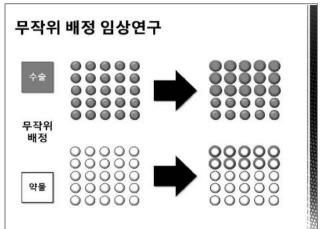


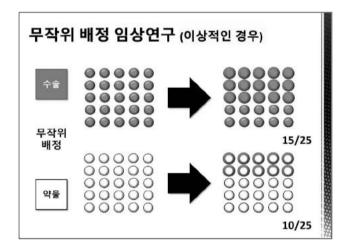


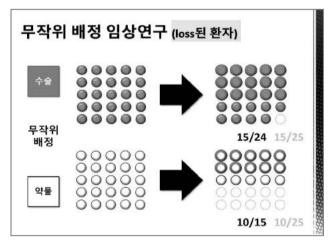


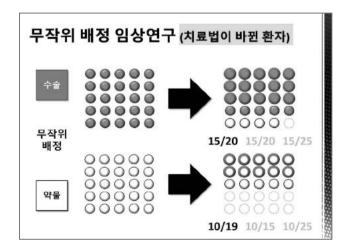




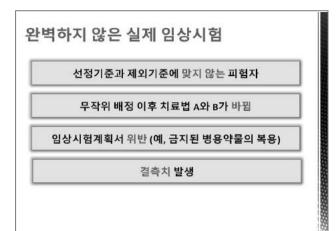


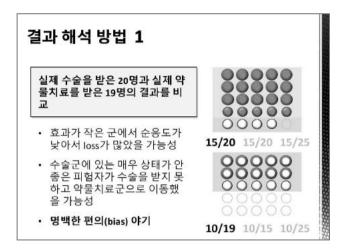


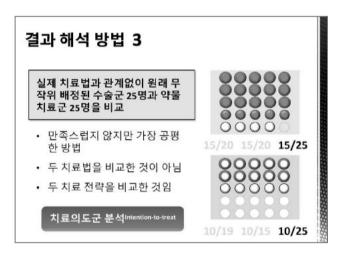




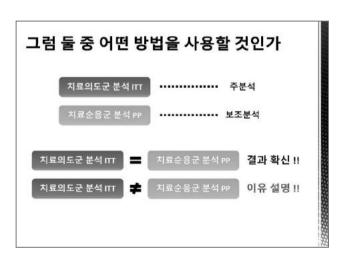




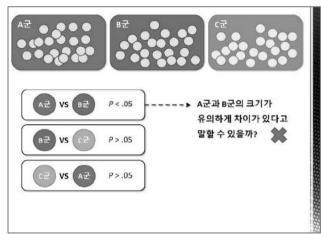




무작위 배정 임상연구 결과의 해석

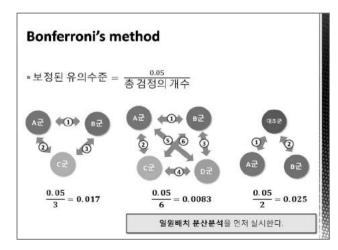

 Drop-out, missing data, 치료법 바뀜과 관계없 이, 무작위 배정에 의하 여 정해진 군에 근거하 여 두 군을 비교하는 방 법

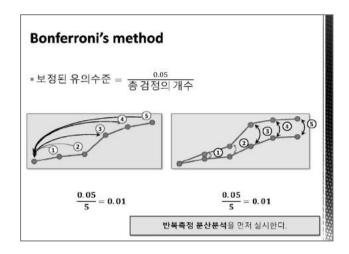

치료의도군 분석 Intention-to-treat, ITT


 편의(bias) 발생을 최소 화할 수 있음 치료순응군 분석 Per Protocol, PP

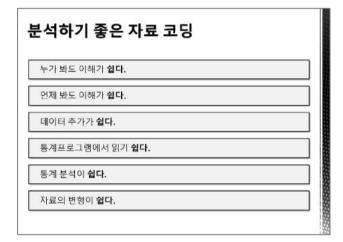
 임상시험계획서를 잘 준수한 피험자들의 집 단을 대상으로 분석하 는 방법

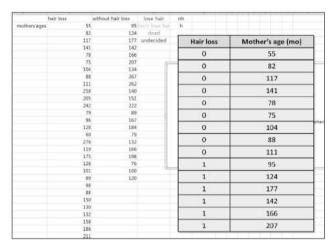
• 편의(Bias)는 있으나 치 료법의 순수한 효과를 더 잘 비교하리라 예상 됨

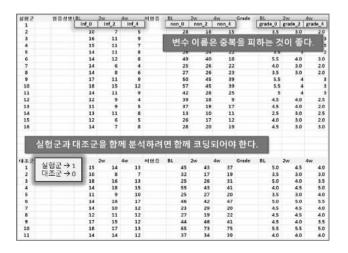


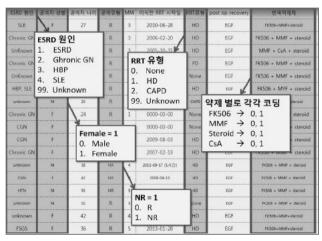


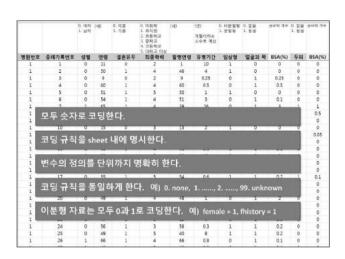


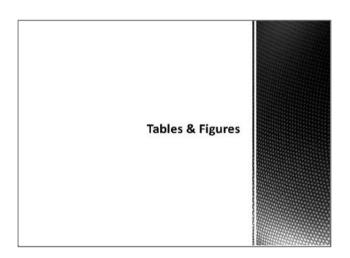


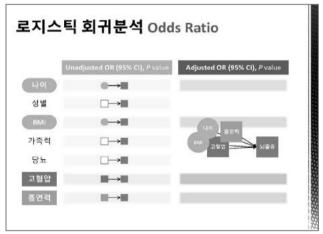


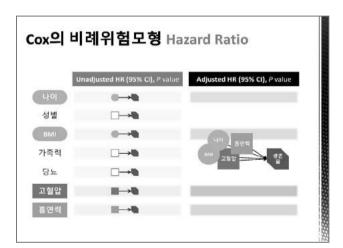


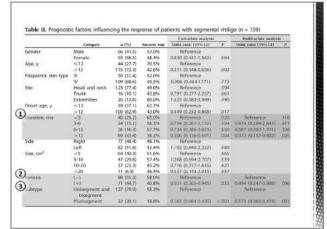


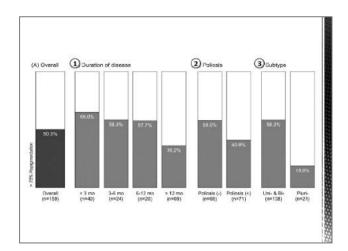


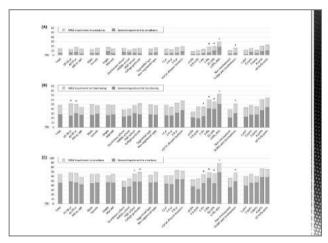


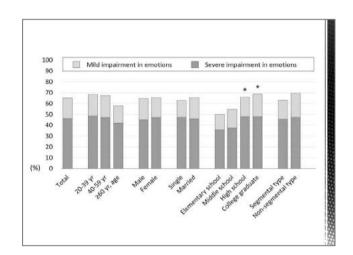


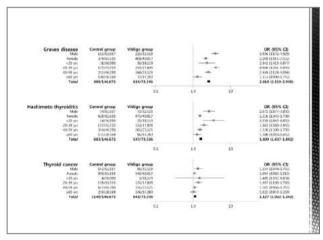


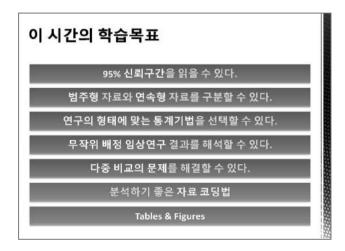

			days	months	face, neck trunk extremities hands and feet unknown	year	1. <12 2. >12		
in	initial	end	treat_day	treat_mo	site	age	age group	female=1	fhistory
1	2008-07-31	2009-06-24	328	10.9	2	В	1	1	0
2	2008-08-08	2010-08-24	746	24.9	1	14	- 2	1	0
3	2008-08-12	2010-02-12	549	18.3	1	24	2	0	0
4	2008-10-28	2009-05-25	210	7.0	1	34	2	1	0
5	2008-11-05	2009-12-19	409	13.6	1	- 8	1	0	0
6	2008-12-27	2009-10-12	289	9.6	1	27	2	1	0
7			41 -1						0
8	모두 숫지	도고당	언니.						0
9			7 200	1000	T .	-	-	-	0
10	A CONTRACTOR OF THE PARTY		Serie Barrer	A commence	Vi di	(SEE	200	1000	0
11	코딩 규칙	을 sheet	: 내에 명	시한다.					0
12			AND DESCRIPTION OF THE PARTY OF	No. of Concession, Name of Street, or other Persons, Name of Street, Name of S	14	Į.	, in .		0
13	2009-04-14	2009-09-03	142	4.7	3	35	- 2	1	0
14	변수의 정	이루 다.	의까지모	화하 하다	1				0
	L1-10		11-11-1 C	, - -	-1.				0
16	5008-04-59	5013-00-51	1376	36.3	1 1	34	1 2	1	0
17			44 mm +44 m	15 Same Comp					0
18	고당ㅠ~	출공일	아게 만니	r. 491) o.	none, 1,	2,	99. unkno	own	0
19	2000.05.25		200	20.0		072			0
20			All Shipping		EAST WAR - 5	Section 1	100000000000000000000000000000000000000	hi salara	0
21	이분형지	로는 모	두 0과 15	리코딩한	다. 예) femi	ale = 1.	fhistory =	610	
23									0
24	2009-07-07	2009-12-26	248	5.7 B.3		5		0	0
25	2009-07-08	2010-03-13	1370	44.0	1 1	9	1 3	0	0
26	2009-07-17	2009-11-28			1	3	1		0
			120	4.0	1 1	7	1 1	0	

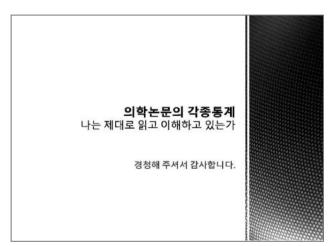












김 동 준 연세대학교 의과대학 영상의학과

▶ 학력 및 경력

1994년 연세대학교 의과대학 졸업

2002-2004년 세브란스병원 신경영상 fellowship

2009-2010년 Toronto Western Hospital research fellowship

2004년 - 현재 세브란스병원 영상의학과

▶ 학회활동

1995년-현재 대한영상의학회 정회원

2002년-현재 대한신경중재치료의학회 정회원

2004년-현재 대한뇌졸중학회 정회원

2013년-현재 WFITN 정회원

Dangerous anastomosis: Clinical revelations

김 동 준

연세대 영상의학과

Anastomoses between the external and intracranial arteries result from a close link of embryologic & phylogenetic development of the aortic arches and the organs of the head & neck. These may be dangerous in that the potential anastomotic channels may cause inadvertent intracranial stroke during embolization of the extracranial arteries. On the other hand, these channels may serve as a collateral salvage route when one channel becomes occluded pathologically or during interventional procedures. The anastomotic channels may be revealed when there is increased intra—arterial pressure (during embolization, superselective injection, wedged injection), sump in high flow shunt, and as collateral route in major arterial occlusions.

Often the anastomotic channels follow the cranial nerve along the neural foramen. Thus, the dangerous anastomoses and the relevant cranial nerve supply should always be considered together when planning and performing interventional procedures.

The major dangerous anastomotic channels may be summarized as follows:

Region	Arterial trunk	Specific dangerous branch
Orbit (ophthalmic artery branches)	IMA	InfraorbitalA (orbital branch) SphenopalatineA (ethmoidal) MMA (meningoophthalmic, RecMeningA) AntDeepTempA (orbital branch) Superficial temporalA (supraorbital br)
Develous version (correlid sinhan)	IMA	MMA (cavernous ramus) AMA (cavernous ramus) Artery of foramen rotundum
Parasellar region (carotid siphon)	phon) APA IMA	Superior pharyngeal (carotid branch) Jugular artery (LatClival branch) Hypoglossal artery (MedClival branch)
	IMA	Anterior tympanic artery Vidian artery
Temporal bone (Intrapetrous ICA)	APA	Superior pharyngeal (Mandibular) Inferior tympanic artery
	PA or OA	Stylomastoid branch
	OA	C1 anastomotic branch C2 anastomotic branch
Upper cervical spaces (VA)	APA	Hypoglossal A (odontoid arch system) Musculospinal A Lateral spinal A
	AscCervA	C3,4 anastomosis
	PostCervA	C2,3,4 anastomosis
	ECA trunk	C4 collateral

강호정 법무법인 지평

▶ 학력

이화여자대학교 법과대학 및 동 대학원 졸 2000년 (42회) 사법시험 합격, 사법연수원 32기

▶ 경력

- 전) 수원지방검찰청 형사부 검사
- 전) 대전지검 천안지청 형사부 검사
- 전) 창원지방검찰청 형사부 검사
- 전) 부산지검 동부지청 형사부 검사
- 전) 서울 서부지방검찰청 형사부 검사
- 전) 강호정 법률사무소 변호사
- 현) 법무법인 지평 구성원 변호사
- 현) 동의대학교 법학과 겸임교수

의료사고 및 법적 문제발생 시 대응방법

강 호정

법무법인 지평

2017 대한뇌혈관내수술학회 정기학술대회 및 총회

Symposium: Review of endovascular devices

좌장: 순천향대 김범태, 서울대 권오기

Stroke devices 가톨릭대 박상규

Overview of detachable coils 한림대 전홍준

Stent for aneurysm coiling 연세대 정준호

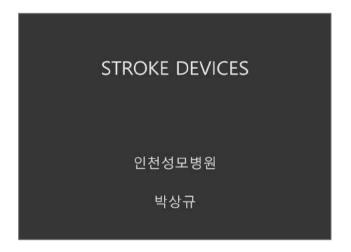
박 상 규 가톨릭대학교 인천성모병원

▶ 학력 및 경력

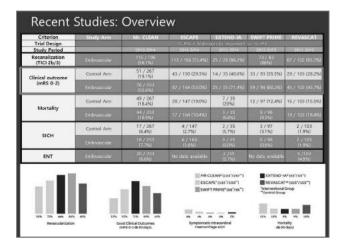
2003년한양대학교 의과대학 졸2008년한양대학교 신경외과 수료

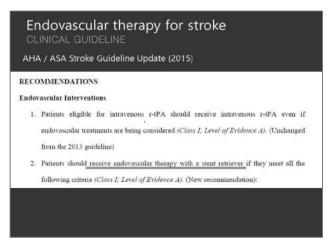
2009년 아주대학교 임상강사

2010-현재 가톨릭대학교 인천성모병원

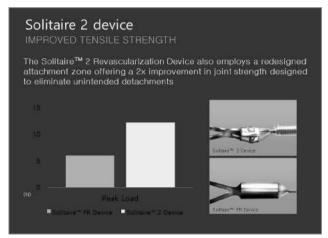

▶ 학회활동

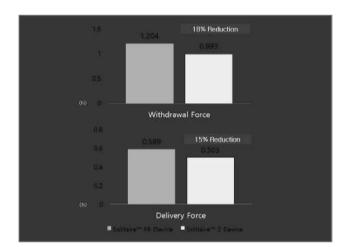
대한 신경외과학회, 뇌혈관내수술학회, 뇌혈관중재수술학회, 뇌졸중학회

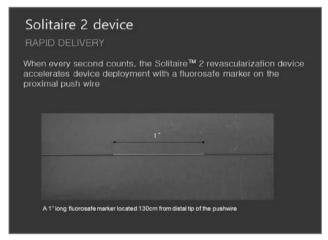

Stroke devices

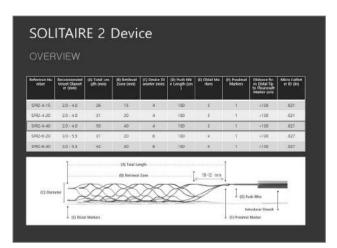

박 상 규

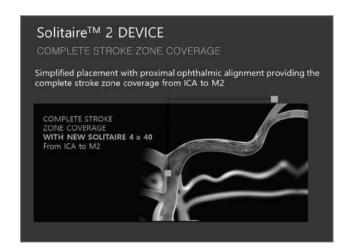
가톨릭대

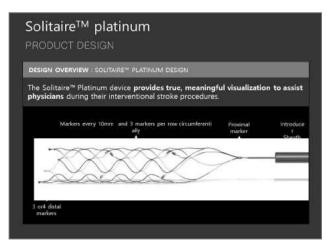


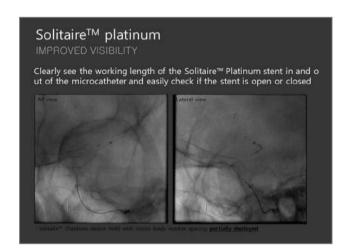


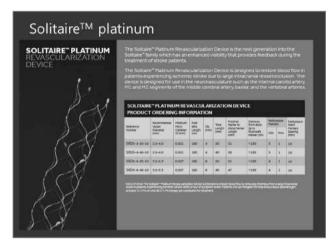


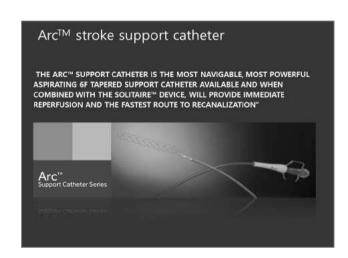


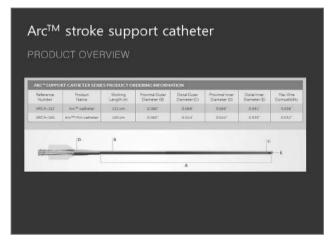


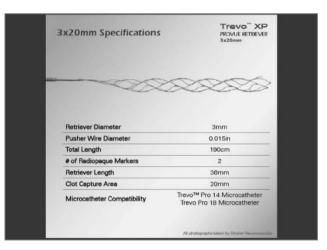


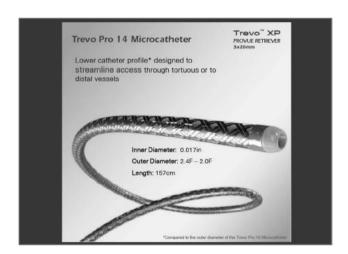


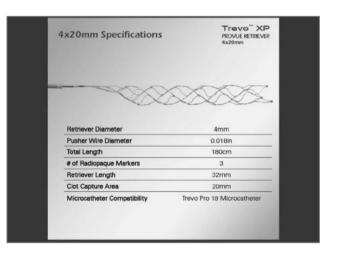


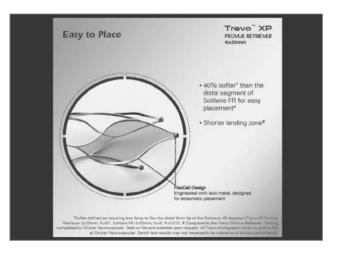


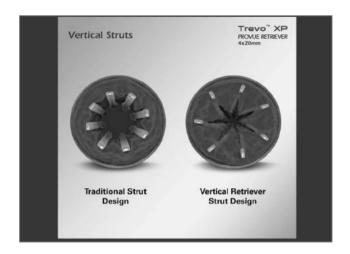


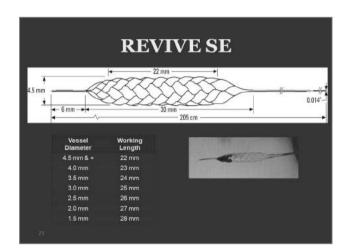


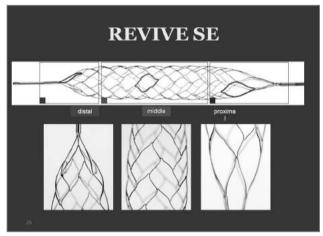


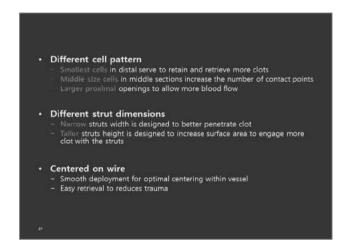


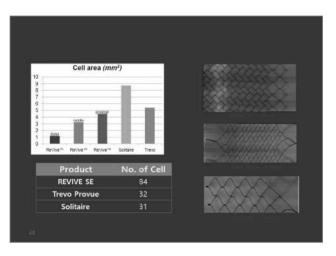


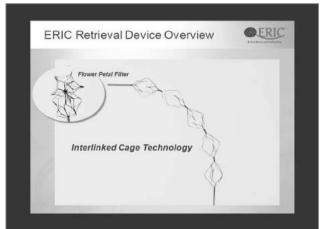


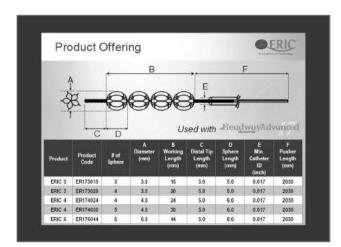


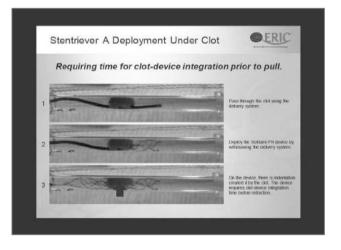


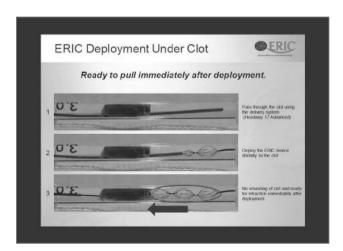


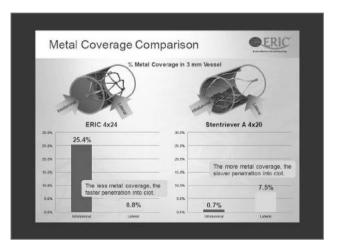


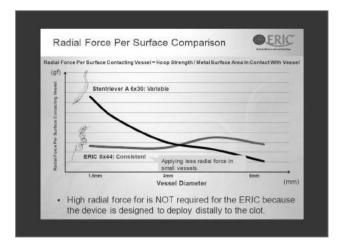


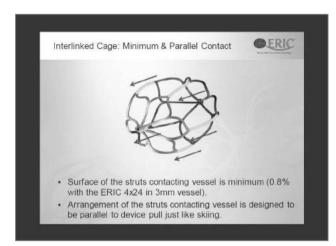


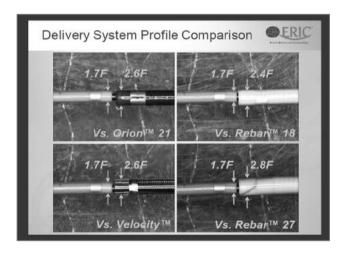


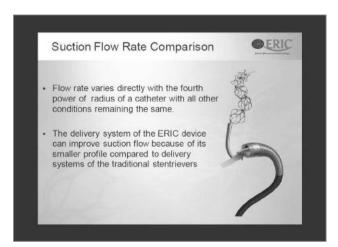


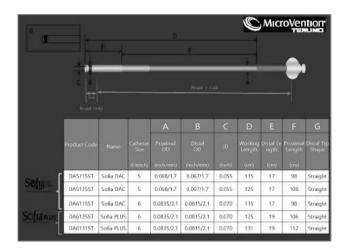


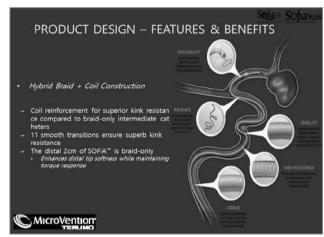


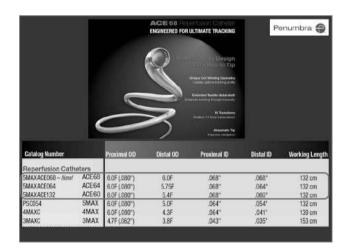


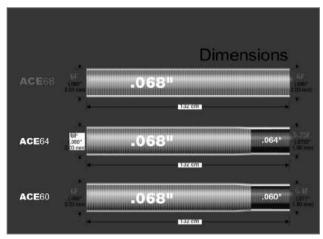


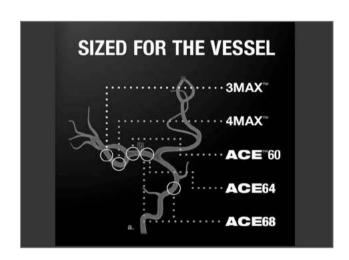


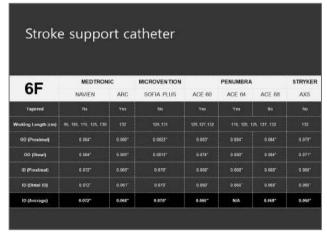


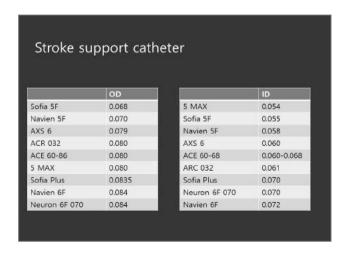












전 홍 준 한림대 강동성심병원

▶ 학력

한림대학교 의과대학(04) 한림대학교 의학석사(09)

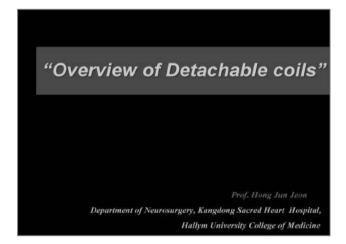
▶ 경력

2012-2013 연세대 신촌세브란스 병원 신경외과 임상연구 조교수, 임상강사

2013-2015 연세대 신촌세브란스 병원 영상의학과 임상연구 조교수

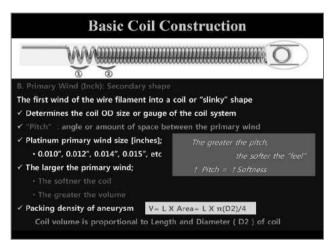
2015-현재 한림대 강동성심병원 신경외과 조교수

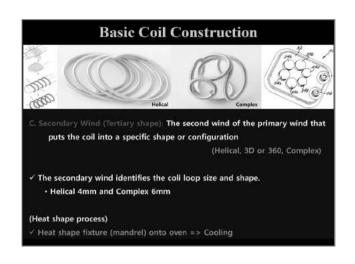
Cerebrovascular anastomosis training course at the ASAN Medical center(2013) Skull Base surgical approach training course at Severance Medical center(2013) Visitor training to Micheal Lawton at the UCSF(2014)

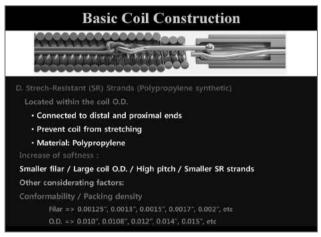

▶ 학회활동

대한신경외과학회 정회원 대한뇌혈관외과학회 종신회원 대한신경중재치료의학회 정회원 대한뇌혈관내수술학회 정회원

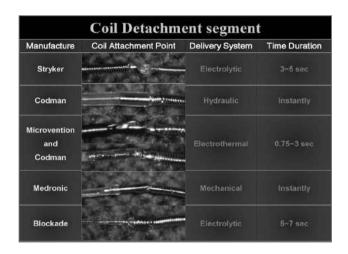

Overview of detachable coils

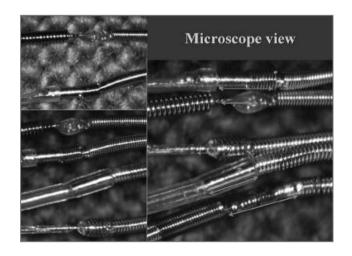

전 홍 준

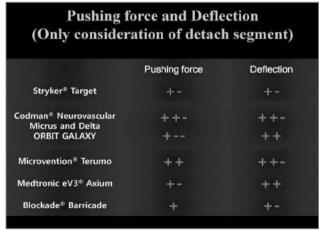

하림대

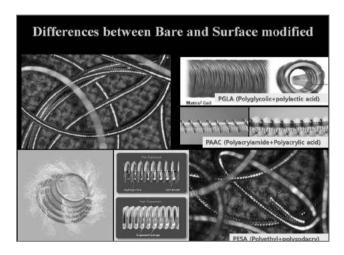


Detachable Coils 1. Basic construction of coil - Elements of coil and Coil profiles of manufactures 2. Consideration of Coil action via Detachment 3. Difference of Bare Vs Surface-modified 4. Memory shape of Coil material - Open Vs Closed Vs Circular Loop - Regular Vs Variant type

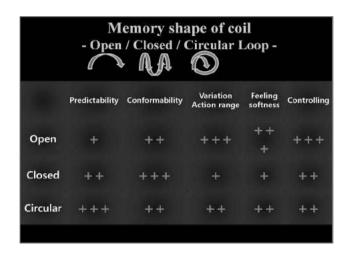

Manufacture	Coil Name	2° wind D.	Filar	1° wind
Stryker	Target XL	5~16 mm	0.0025"	0.014"
Stryker	Target Standard	6~12 mm	0.002"	0.010"
Stryker	Target Soft	6-12 mm	0.00175"	0.010"
Stryker	Target Ultra	2~5 mm	0.0015	0.010"
Stryker	Target Nano	1~1.5 mm	0.00125	0.010"
Medtronic	Axium Prime ES	<u>1~3.5mm</u>	0.0013"	0.0108"
Medtronic	Axium Prime SS	4~6mm	0.0015"	0.0115"
Medtronic	Axium	7~10mm	0.00225"	0.0135"
Medtronic	Axium	12~25mm	0.00275"	0.0145"

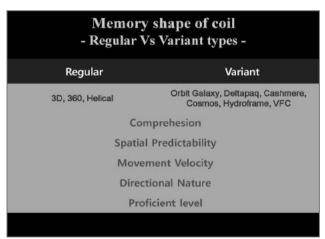

Manufacture	Coil Name	2° wind D.	Filar	1° wind
Microvention	Hypersoft	All	0.00125"	0.010"
Microvention	Hypersoft 3D	All	0.00125*	0.010"
Microvention	Cosmos 10	2~2.5	0.002"	0.010"
Microvention	Cosmos 10	3~6	0.002"	0.012"
Microvention	Cosmos 10	7~10	0.002"	0.012"
Microvention	Cosmos 18	10~24	0.003~0.004"	0.0140~0.0150"
Microvention	VFC	1~3	0.002"	0.010"
Microvention	VFC	36	0.002"	0.011"
Microvention	VFC	6~10	0.002"	0.012"

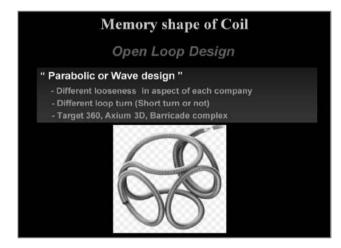

Manufacture	Coil Name	2° wind D.	Filar	1° wind
Microvention	VFC	10~20	0.002"	0.014"
Microvention	Hydrosoft	All	0.002"	0.013"
Microvention	Hydroframe	2~4	0.0175"	0.013"
Microvention	Hydroframe	5~10	0.0175"	0.0135"
Microvention	Complex 10	2~3	0.015"	0.0095"
Microvention	Complex 10	4~10	0.015"	0.010"
Microvention	Helical soft	All	0.015"	0.0095"
Microvention	Helical regular	All	0.015"	0.010"

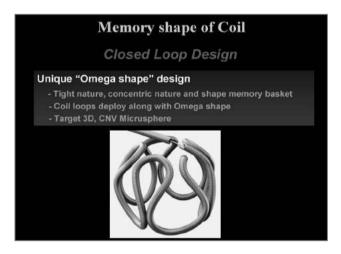

Manufacture	Coil Name	2° wind D.	Filar	1° wind
CNV	Orbit Galaxy Xtrasoft	2~5mm	0.0015"	0.012"
CNV	Orbit Galaxy Fill	4~12mm	0.002"	0.012"
CNV	Presidio 10	4mm	0.00175"	0.0105"
CNV	Presidio 11	5~8mm	0.002"	0.0105"
CNV	Presidio 12	8~20mm	0.003"	0.015"
CNV	Micrusphere 10	24mm	0.00175"	0.010"
CNV	Micrusphere 10	5~10mm	0.002"	0.0105"
CNV	Cashmere 14	2~4mm	0.00175"	0.0135"
CNV	Cashmere 14	5~12mm	0.00225"	0.0135"
CNV	Deltapaq 10	1.5~10mm	0.0015"	0.0105"
CNV	Deltaplush 10	1.5~4mm	0.0013"	0.010"

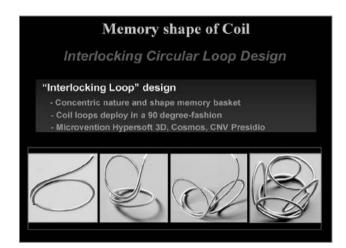
Manufacture	Coil Name	Coil Diameter.	1° wire D.	2° wire D.
Blockade	Barricade Complex Frame 10	5~10mm	0.002"	0.012"
Blockade	Barricade Complex Frame 10	2~4mm	0.0015"	0.011"
Blockade	Barricade Complex Finish 10	3~5mm	0.0015"	0.010"
Blockade	Barricade Complex Finish 10	12.5mm	0.00125"	0.010"
Blockade	Barricade Helical Finish 10	3~5mm	0.0015"	0.010"
Blockade	Barricade Helical Finish 10	1~2.5mm	0.00125"	0.010"

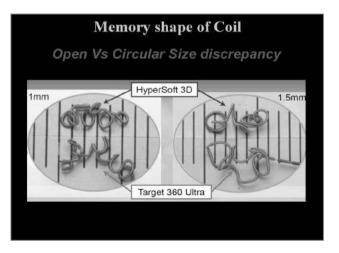


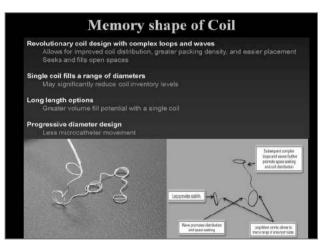


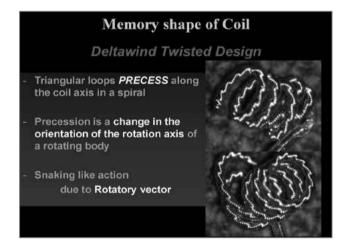


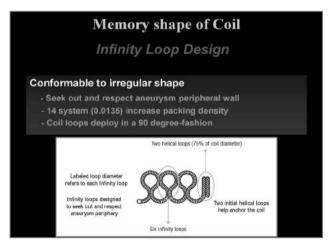


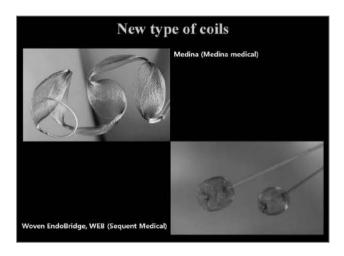

Shape of Coil 1. Interaction - Previous Basket or Loop 2. Microcatheter action - Back and forth or Sway 3. Entering Velocity of Coil segment 4. Independent (memory) characteristics of Coils - Helical or Complex - Variant style

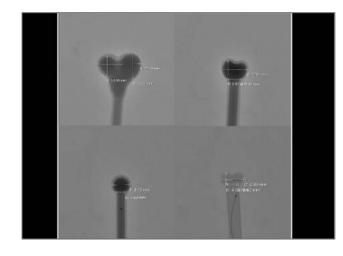


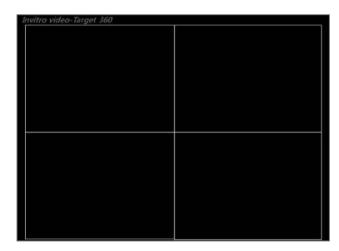


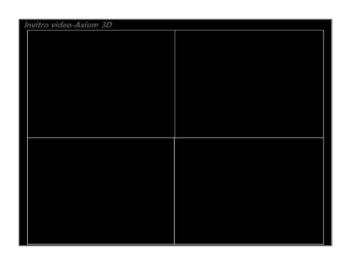


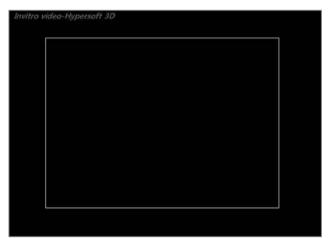


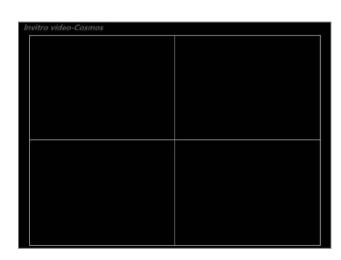


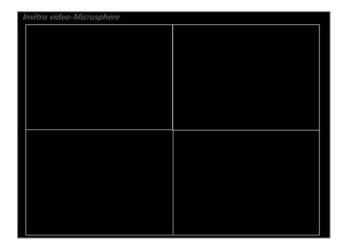


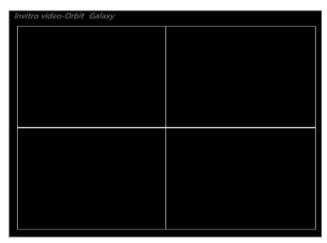


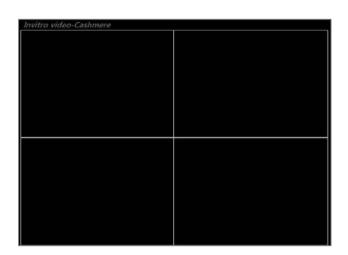


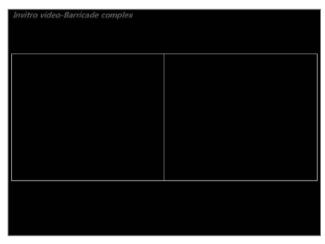


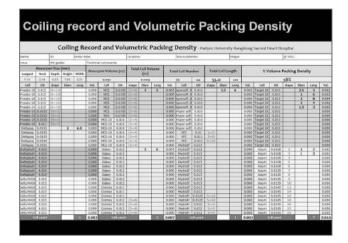


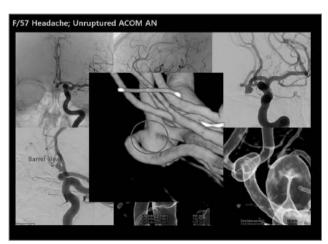




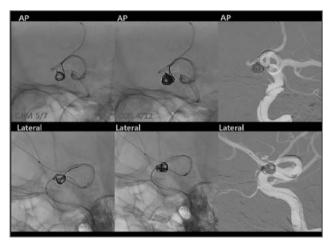


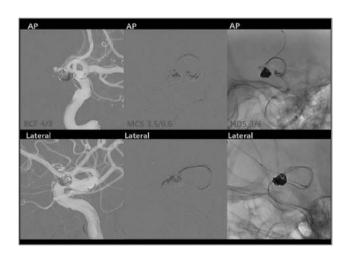


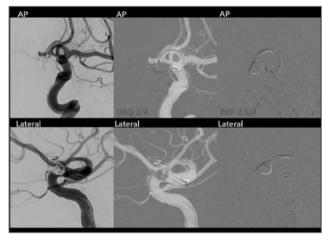


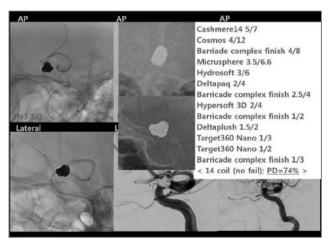


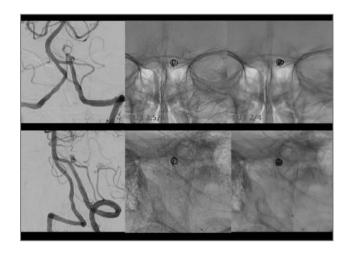


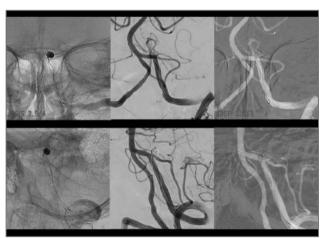


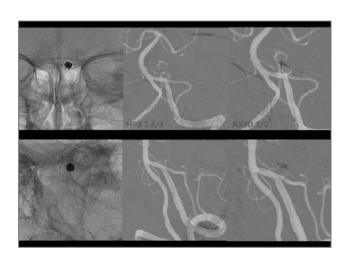


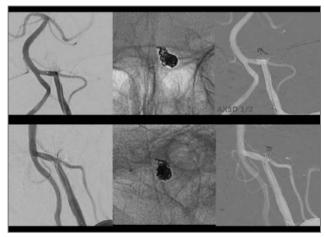


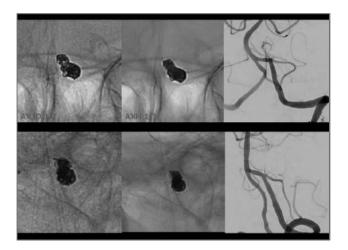


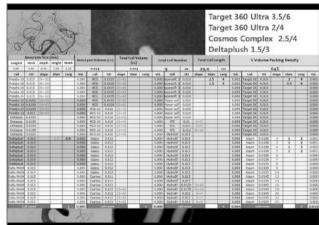


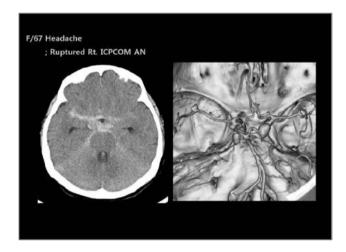


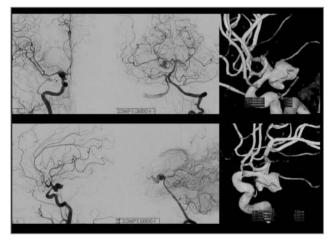


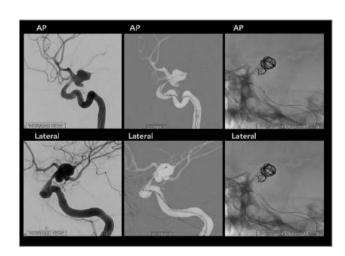


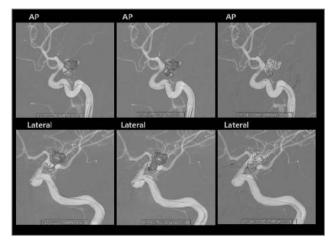


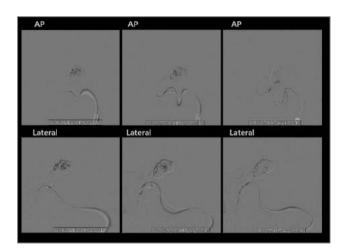


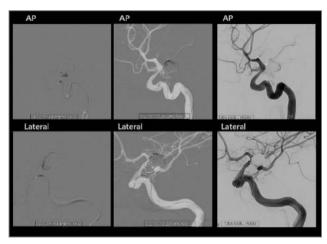


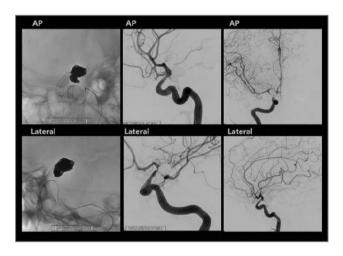


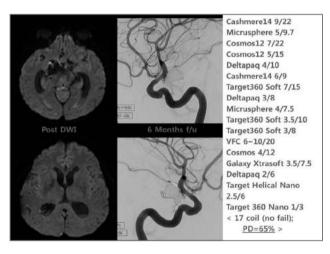


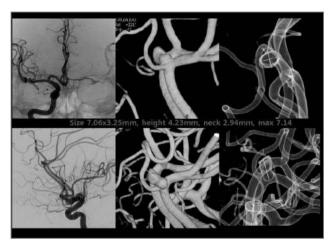


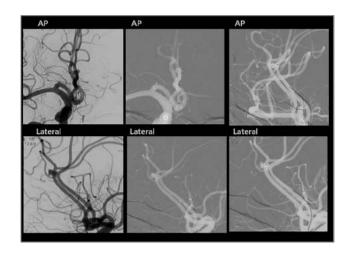


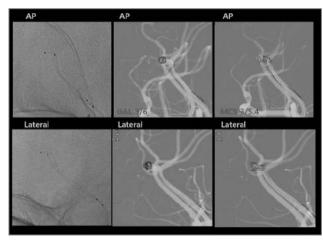


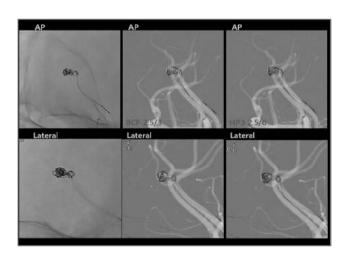


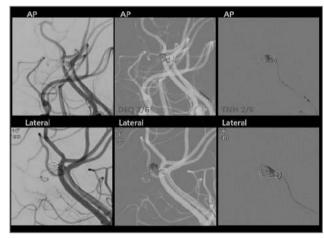


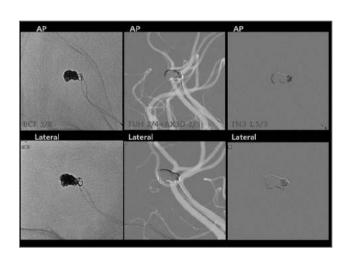


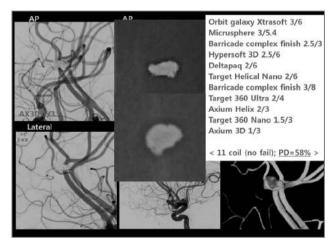


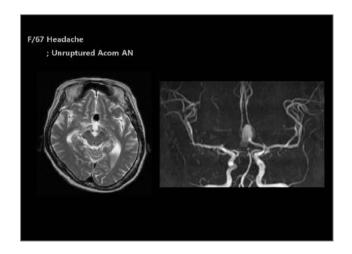


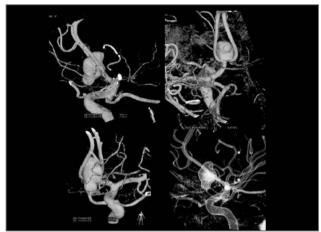


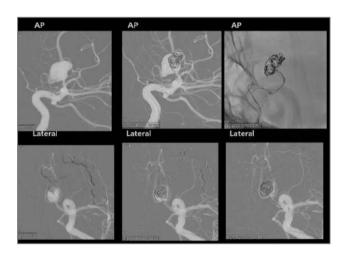


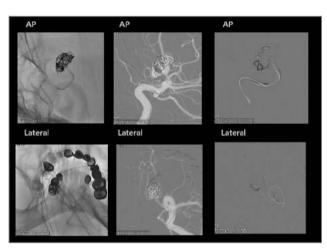


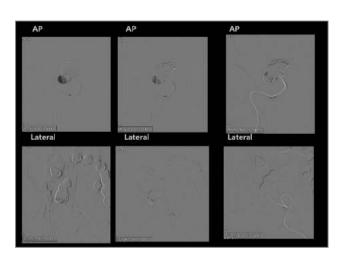


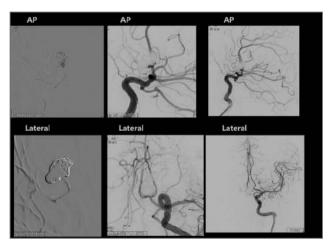












Summary

- · Coil profiles of each company is different nature.
- Comprehension of various coil's characteristics
 Reduce burden of technical limitation during it.
 -> Enhance the packing density with safety
- · Memory shape of coil
 - => Different action of loop
 - => Different types of coils are originally composed.

정 준 호 세브란스병원, 연세대학교 의과대학 신경외과학교실

▶ 학력 및 경력

2002년 2월인하대학교 의과대학 졸업2005년 8월의학석사 취득 (인하대학교)2007년 2월신경외과 전문의 자격증 취득2010년 2월의학박사 취득 (인하대학교)

2010년 3월-2012년 9월 인하대학교 의과대학 신경외과학교실 조교수 2012년 9월-2014년 2월 연세대학교 의과대학 신경외과학교실 임상조교수

2014년 3월-현재 연세대학교 의과대학 신경외과학교실 조교수

2016년 3월-2017년 7월 해외연수 (RUSH University Medical Center, Chicago)

▶ 학회활동

2012년-현재	Editor, Journal of Cerebrovascular an	d Endovascular Neurosurgery

2014년-현재 Review Board, Journal of Korean Neurosurgical Society

2016년-현재 대한뇌혈관내수술학회 보험위원회 운영위원

2017년-현재 대한뇌혈관외과학회 보험위원회 간사

2017년-현재 대한뇌혈관외과학회 역사편찬위원회 운영위원 2017년-현재 대한뇌혈관외과학회 국제교류위원회 운영위원

Stents for Aneurysm Coiling

정 준 호

연세대 신경외과

Endovascular treatment (EVT) of intracranial aneurysms has been increasingly accepted worldwide. Increasing the number of patients being referred for EVT and thus further emphasizing the need to enhance the ability to treat intracranial aneurysms effectively. However, large, giant, and wide—necked aneurysms can be difficult to treat by EVT due to the risk of coil protrusion into the parent artery and aneurysm recurrence. Introduction of stents designed as an adjunct tool for coiling has been shown to be of beneficial value for those aneurysms. However, a variety of devices, different in their designs, was used with the potential risk of periprocedural complications including both hemorrhage and thromboembolism. While new techniques and devices for EVT seek to strengthen endovascular procedure by increasing the simplicity of the procedure as well as decreasing the risk of recurrence, it is mandatory to know about the devices in order to reduce recanalization and retreatment rates without impacting procedural safety. Here, stents for assisting aneurysm coiling were reviewed and would be introduced, especially in the aspect of new devices.

2017 대한뇌혈관내수술학회 정기학술대회 및 총회

Free paper || Ischemia

좌장: 전남대 **김태선**, 한양대 **이형중**

Clinical Implications of Arterial Spin-labeling(ASL) MR compared with Single-photon Emission Computed Tomography(SPECT) in Patients with Intracranial Occlusive Disease

신 동 성 순천향대 부천병원

신동성¹, 이아름², 박종현¹, 김범태¹ 순천향대 부천병원 신경외과¹, 영상의학과²

Objective: Arterial spin-labeling (ASL) is MR perfusion method for quantitatively measuring cerebral blood flow (CBF) by taking advantage of arterial water as a freely diffusible tracer. Because ASL is completely noninvasive and provides absolute cerebral blood flow (CBF) information, ASL has been increasingly used for patients with acute or chronic cerebrovascular disease. SPECT with rest and Diamox (acetazolamide) challenge can supply cerebral vascular reactivity and inform the misery perfusion regions, however SPECT modality have some disadvantages, such as high cost, radioisotope exposure, relatively longer examination period (more two days) and institutional limitations. In the patient who diagnosed with intracranial artery occlusive disease, we took SPECT with DIAMOX challenge image and ASL image simultaneously for comparison of both image diagnosis.

Methods: 12 patients included for 2 years, and each image were evaluated by one nuclear medicine specialist and the another neuroradiologic specialist. Demographic characteristics, diagnosis, affected lesions and vascular reservation have been analyzed.

Result: There are 7 males and 5 females. Mean age was 49.5-year-old. All patients show relatively same affect lesions side, vascular reserve pattern with same opinions in both specialists. However, ASL images showed more detail anatomical information rather than SPECT images, because of resolution difference in our institution.

Conclusion: ASL is noninvasive MR perfusion modality and may show equivalent image compared with SPECT. moreover, ASL shows high resolution images and it make possible to get detail information on pathologic lesions.

Collateral Status Affects the Onset-to-reperfusion Time Window for Good Outcome

김 병 문 연세대 세브란스병원

Byung Moon Kim, on behalf of CoSETS investigators

Severance Hospital Stroke Center, Yonsei University College of Medicine, Seoul, Korea

Objective: To characterize the time window in which endovascular thrombectomy (EVT) is associated with good outcome, and to test the differential relationship between functional outcome and onset-to-reperfusion time (ORT), depending on collateral status.

Methods: This is a retrospective analysis of clinical and imaging data of 554 consecutive patients who had recanalization success by EVT for anterior circulation large artery occlusion from the prospectively maintained registries of 16 comprehensive stroke centers between September 2010 and December 2015. The patients were dichotomized into good and poor collateral groups based on computed tomographic angiography. We tested whether the likelihood of good outcome (modified Rankin scale, 0-2) by ORT is different between two groups.

Result : ORT was 298 minutes ± 113 minutes (range, 81 to 665 minutes), and 84.5% of patients had good collaterals. Age, diabetes mellitus, previous infarction, National Institute of Health Stroke Scale, good collaterals (OR, 40.766; 95%Cl, 10.668–155.78; p

Conclusion: Earlier successful recanalization was strongly associated with the good outcome in poor collateral group, but this association was weak during the tested time window in good collateral group. This suggests that the ORT window for good outcome can be adjusted based on collateral status.

Predictive Value of CT Angiography—determined Occlusion Type in Stent Retriever Thrombectomy

김 병 문 연세대 세브란스병원

Byung Moon Kim, Jang-Hyun Baek, Joonsang Yoo, Hyo Suk Nam, Young Dae Kim, Dong Joon Kim, Ji Hoe Heo, Oh Young Bang

Severance Hospital Stroke Center, Yonsei University College of Medicine, Seoul, Korea

Objective: To investigate whether occlusion type identified with computed tomography angiography (CTA-determined occlusion type) could predict endovascular treatment (EVT) success using stent retriever (SR) thrombectomy.

Methods: Consecutive stroke patients who underwent CTA and then EVT for intracranial large artery occlusion were retrospectively reviewed. CTA-determined occlusion type was classified into truncal-type occlusion or branching-site occlusion and compared with digital subtraction angiography (DSA-determined occlusion type) during EVT. Three rapidly-and readily-assessable preprocedural findings (CTA-determined occlusion type, atrial fibrillation [AF], and hyperdense artery sign [HAS]), which may infer occlusion pathomechanism (embolic versus non-embolic) before EVT were evaluated for association with SR success along with stroke risk factors and laboratory results. In addition, the predictive power of the 3 preprocedural findings for SR success were compared with receiver operating characteristic curve (ROC) analyses.

Result : A total of 238 patients (mean age, 70.0 years; male, 52.9%) were included in this study. CTA-determined occlusion type corresponded adequately with DSA-determined occlusion type (p = 0.453). AF (odds ratio [OR], 2.73; 95% confidence interval [CI], 1.29 – 5.79) and CTA-determined branching-site occlusion (OR, 7.73; CI, 3.26 – 18.4) were independent predictors for SR success. For predicting SR success, the area under the ROC curve value for CTA-determined branching-site occlusion (0.695) was significantly greater than atrial fibrillation (0.597, p = 0.045) and hyperdense artery sign (0.603, p = 0.023).

Conclusion: CTA-determined occlusion type was significantly associated with SR success. Furthermore, among the 3 rapidly-and readily-assessable preprocedural findings, CTA-determined occlusion type had the greatest predictive power for SR success.

Differentiation between Brain Hemorrhage and Contrast Medium after Intra-arterial Treatment in Acute Ischemic Stroke Using Spectral Detector-based CT

진 성 원 고려대 안산병원

Sung-won Jin, Dong-jun Lim, Sung-kon Ha, Yong-su Jung

Department of Neurosurgery, Korea University Ansan Hospital, Ansan, Korea

Objective: Assessment of intracerebral hemorrhage after intra-arterial treatment in acute ischemic stroke is an important factor in the decision of medical treatment after the procedure. This study was performed to evaluate the usefulness of spectral detector-based CT compared with conventional CT after intra-arterial treatment.

Methods: From January 2016 to October 2017, Twenty-six consecutive acute ischemic stroke patients following intraarterial treatment were included. They were examined with conventional CT or spectral detector-based CT. By taking spectral detector-based CT images, conventional images, virtual unenhanced non-contrast(VNC) images and iodine density images were calculated using a dedicated brain hemorrhage algorithm.

Result: Of the 26 patients, 22 patients underwent conventional CT and three of them had intracerebral hyperdense areas, and one of them disappeared from follow up brain CT, indicating extravasation. The remaining 4 patients underwent spectral detector—based CT and two of them showed intracerebral hyperdense areas in the conventional image, but all of them were identified as extravasation in the VNC image.

Conclusion: Spectral detector—based CT could improve accuracy and diagnostic confidence in early differentiation between intracerebral hemorrhage and contrast medium extravasation in acute stroke patients following intra—arterial treatment.

A Useful Diagnostic Method to Reduce the In-hospital Time Delay for Mechanical Thrombectomy: Volume Perfusion Computed Tomography with Added Vessel Reconstruction

이 호 준 가톨릭대 성빈센트병원

Ho Jun Yi, Jae Hoon Sung, Dong Hoon Lee, Min Hyung Lee Department of Neurosurgery, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea

Objective: Volume perfusion CT (VPCT) with added CT angiography (CTA)—like reconstruction from VPCT source data (VPCTA) can reveal multiple intracranial parameters. We examined the usefulness of VPCTA in terms of reducing the in-hospital time delay for mechanical thrombectomy.

Methods: A total of 180 patients who underwent mechanical thrombectomy at our institution from January 2014 to March 2017 were divided into two groups: a CT angiography based thrombectomy decision group (Group 1: CTA) and a VPCTA based decision group (Group 2: VPCTA). Multiple time interval categories (from symptom onset to groin puncture, from hospital arrival to groin puncture, procedure time, from symptom onset to reperfusion, and from hospital arrival to reperfusion) were reviewed. All patients underwent clinical assessment with the NIHSS score and modified Rankin Scale (mRS), and radiologic results were evaluated by the thrombolysis in cerebral infarction (TICI) score.

Result: In all of the time interval categories except for procedure time, the VPCTA group showed a significantly shorter in-hospital time delay during the pre-thrombectomy period than the CTA group. The 3-month mRS score was significantly lower in the VPCTA group (2.8) compared to the CTA group (3.5) (p=0.003). However, there were no statistically significant differences between the two groups in the other clinical and radiologic outcomes.

Conclusion: Compared to CTA, VPCTA significantly reduced the in-hospital time delay during the pre-thrombectomy period.

Clinical Manifestations of Isolated Chronic Middle Cerebral Artery Occlusion in relation to Angiographic Features

신 희 섭 경희대병원

Hee Sup Shin¹, Jun Seok Koh¹, Chang-Woo Ryu², Hak Cheol Ko¹, Soonchan Park², Sang-Beom Kim³ Department of Neurosurgery, ²Radiology, ³Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea

Background and Purpose: Isolated chronic middle cerebral artery occlusion (ChMCAO) is not a rare condition, and it is known to cause hemodynamic stroke. The purpose of this study was to evaluate differences in the clinical manifestations and prognosis of isolated ChMCAO in relation to angiographic features,

Methods: Fifty-six patients with isolated ChMCAO were enrolled in this retrospectively study. In accordance with the degree of antegrade collateral flow (AF) on angiography, patients were categorized into poor and good AF groups. The 2 groups were assessed and compared for the presence and recurrence of neurologic symptoms.

Result : Of the 56 patients, 33 were in the poor AF group and 23 were in the good AF group. The prevalence of ischemic symptoms was significantly higher in the poor AF group than in the good AF group (P(0.05). During an average follow-up period of 33.8 months, recurrent ipsilateral symptoms occurred in 6 of 45 patients. The hazard ratio conferred by poor AF was 5.36 (95% confidence interval, 1.08 - 26.57) for recurrent symptoms.

Conclusion: Our results showed that AF through the basal collateral network may be related to clinical manifestations of ChMCAO. Good AF in isolated ChMCAO may play an important role in preventing the recurrence of an ischemic event.

Combined Stent-retriever Plus Aspiration Thrombectomy for Acute Ischemic Stroke and Its Clinical Efficacy

허 원 명지병원

Won Huh

Department of Neurosurgery, Myongji Hospital, Goyang, Korea

Objective: After utilization of an intermediate catheter as an aspiration catheter, our institute switched the strategy of mechanical thrombectomy for acute ischemic stroke from stent-retriever thrombectomy to combined stent-retriever plus aspiration thrombectomy. Herein we describe detailed method of combined approach and report its clinical efficacy.

Methods: The combined approach was performed using a balloon guiding catheter in the cervical ICA. After an intermediate catheter was positioned at the petrous or cavernous ICA segment, a 0.021 inch microcatheter was advanced past the thrombus. The stent-retriever was then deployed across the thrombus. Through the angiography performed with an intermediate catheter, we delineated the thrombus. And the intermediate catheter was advanced as close to the proximal aspect of the thrombus as possible. After balloon inflation, the combined stent-retriever plus intermediate catheter system was carefully removed as a unit under manual aspiration through the intermediate catheter. This procedure was repeated until successful reperfusion was achieved or the procedure was terminated. A retrospective data analysis was performed to identify patients treated with mechanical thrombectomy, stent-retriever alone or combined approach.

Result: From 1 May 2016 until 1 November 2017, 23 patients underwent stent-retriever thrombectomy and 15 patients treated with combined approach. Clinical characteristics between two groups was not different. And the procedural success (TICl 2b or 3) rates were not different (87.0% and 86.7%, respectively, p=1.000). Statistically not significant, but the combined approach showed tendency of lower number of device passes through the thrombus (mean=1.33, range 1-3, SD 0.62) compared with that of stent-retriever group (mean=2.04, range 1-4, SD 1.15). And the combined approach, also showed tendency of decreased time from puncture to reperfusion (mean=34.3 min, range 20-60, SD 14.25) compared with that of stent-retriever group (mean=44.3 min, range 20-90, SD 19.73).

Conclusion: Our study shows the feasibility and efficacy of combined stent-retriever plus aspiration thrombectomy.

Combined Aspiration and Stent Retriever Technique for Large Vessel Occlusion Using Intermediate Catheter (SOFIA)

정 진 영 동의의료원

Jin Young Jung, Byoung Gook Shin

Department of Neurosurgery, Dong-Eui Medical Center, Busan, Korea

Objective: To describe our initial experience of combined aspiration and stent retriever technique for mechanical thrombectomy (MT) using intermediate catheter (SOFIA)

Methods: We retrospectively analyzed 23 consecutive MT patients with 24 procedures using combined aspiration and stent retriever technique. Primary endpoint was successful recanalization (TICl 2b or 3) with first pass aspiration using Sofia. Secondary endpoints were final success rate (TICl 2b or 3) with combined stent retriever technique

Result: First-pass aspiration with TICl 2b or 3 reperfusion was achieved in 6 out of 24 cases (25%). The final successful revascularization rate (TICl 2b or 3) was 87.5% (21 out of 24 cases). Symptomatic reperfusion hemorrhage was occurred in one patient, but was unrelated to procedure itself

Conclusion: Combined aspiration and stent retriever technique for mechanical thrombectomy (MT) is safe and effective. Using a highly trackable intermediate catheter (SOFIA) as aspiration device might contribute to faster and more effective recanalization for large vessel occlusion

2017 대한뇌혈관내수술학회 정기학술대회 및 총회

Free paper III AVM/AVF etc

좌장: 경희대 **고준석**, 순천향대 **윤석만**

Proximal Coil-protected Embolization for Cranial and Spinal Shunt Diseases with N-butyl Cyanoacrylate or Onyx

김 병 문 연세대 세브란스병원

Byung Moon Kim, Jin Woo Kim, Keun Young Park

Severance Hospital Stroke Center, Yonsei University College of Medicine, Seoul, Korea

Objective: To evaluate the effectiveness and safety of proximal coil-protected embolization with NBCA or Onyx for the treatment of cranial and spinal shunt diseases.

Methods: All patients who underwent proximal coil—protected liquid embolization for cranial and spinal shunt diseases were identified from a prospectively maintained neurointerventional database. This technique was employed because tortuous feeding arteries prohibited microcatheter navigation close enough to a target lesion or for prevention of unintentional reflux. Angiographic and clinical outcomes were retrospectively evaluated.

Result: Fifteen patients with cranial (n=9) and spinal (n=6) arteriovenous fistulas (n=10) or malformations (n=5) underwent proximal coil-protected embolization. A total of 22 feeders were embolized with NBCA (n=17) or Onyx (n=5). Penetration of embolic agents into the target lesion was successful in all 22 feeders without any unintentional reflux or premature occlusion of the major draining veins. Post-embolization angiographies revealed complete occlusion in 10, near complete in 3, and partial in 2 patients. There was no treatment-related morbi-mortality. Four patients received additional treatments (1 Onyx embolization, 2 r-knife, and 1 microsurgery). All patients showed complete occlusion on a follow-up angiography (mean, 6 months). Symptoms improved completely in 10 and partially in 4, and remained unchanged in 1 patient.

Conclusion: Proximal coil-protected technique seemed safe and effective for NBCA or Onyx embolization of cranial and spinal shunt diseases when it was difficult to navigate feeding arteries close enough to the target lesion.

Endovascular Stenting for Symptomatic Carotid Dissection with Hemodynamic Insufficiency

신 태 희 부산대병원

Taehee Shin, Youngsoo Kim, Chang Hwa Choi, Jae II Lee, Jun Kyeung Ko

Department of Neurosurgery, Pusan National University Hospital, Busan, Korea

Objective: To date, no controlled studies on the treatment of carotid artery dissection (CAD) have been reported. The purpose of this study was to demonstrate the technical feasibility and clinical efficacy of stent-supported angioplasty (SSA) as primary treatment for acute stroke due to CAD.

Methods: A review of medical records identified 21 patients who underwent SSA as primary treatment for acute stroke related to CAD between 2008 and 2014. The inclusion criteria were recent transient ischemic attack (n = 7, 33.3%) or acute infarct (n = 14, 66.7%) due to CAD (\geq 70% narrowing) with hemodynamic impairment. Technical success rates, complications, and angiographic and clinical outcomes were analyzed retrospectively.

Result: SSA was technically successful in all patients. Of 21 patients, 8 (38.1%) showed an additional intracranial occlusion. Intracranial recanalization to a thrombolysis in cerebral infarction ≥2b flow was achieved in 50% of the cases. Procedure–related mortality was 4.8%, and morbidity was 9.5%. Five (35.7%) of 14 patients presenting with an acute infarct showed significant improvement (decrease in National Institutes of Health Stroke Scale score of ≥4 points compared with admission score) at 7 days after SSA. During the observation period (mean, 20.5 months), stroke recurrence occurred in only 1 patient (5%), resulting in an annual stroke risk of 2.9%. A favorable outcome (modified Rankin Scale score ≤2) was achieved in all 7 patients with a transient ischemic attack (100%) and in 7 of 14 patients with an acute infarct (50%) at the 90–day follow–up.

Conclusion: Our results provide evidence that SSA is a feasible and effective strategy as primary treatment for steno-occlusive CAD patients with significant hypoperfusion or a large penumbra.

Transarterial Balloon-assisted Onyx Embolization of Intracranial Arteriovenous Malformations Using a Dual-lumen Balloon Microcatheter: Two Case Reports

김 태 곤 차의과학대 분당차병원

Sang Heum Kim¹, Tae Gon Kim², Dong lk Kim¹

¹Department of Neuroradiology, ²Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea

Objective: The Onyx system has been well established in recent years as a very important material in the treatment of arteriovenous malformations (AVMs). When using the Onyx, it is essential to wait for the creation of a plug around the tip of the catheter, which enables the effective forward penetration of Onyx,

Methods: Recent reports have shown that the introduction of a dimethyl sulfoxide compatible dual-lumen balloon microcatheter improves the efficiency of AVM embolization. We report our recent experience of two cases of intracranial AVM embolization using Onyx and the transarterial balloon—assisted technique,

Result: In both cases, the procedures were successfully performed and the nidus of the AVM was totally occluded in a relatively short time.

Conclusion: This technique may enable immediate forward flow and penetration of Onyx without concern about reflux. It may also reduce the procedure time and increase the angiographic occlusion rate. Navigation of the dual-lumen balloon microcatheter nevertheless remains a challenge.

Transcervical Access via Direct Neck Exposure for Neurointerventional Procedures at the Hybrid Angiosuite

전 홍 준 한림대 동탄성심병원

Hong Jun Jeon, Jong Young Lee

Department of Neurosurgery, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea

Objective: A complicated course of the common femoral route for neurointervention can prevent approaching of the target. Thus, we advocate transcervical access via neck exposure in a hybrid angiosuite.

Methods: From January 2014 to March 2017, 17 (3.75%) of 453 cases were treated with this approach: 11 cerebral aneurysms (four ruptured, seven unruptured), four acute occlusions of the large cerebral artery, one proximal internal carotid artery (ICA) stenosis, and one direct carotid cavernous fistula (CCF).

Result: All patients were older (mean age, 78.1 years). The main cause was severe tortuosity from the supra-aortic course alone or combined with the infra-aortic course (eight and five cases, respectively) and orifice disturbance (four cases). Under neck vessel exposure, 6-8Fr guiding catheters were placed through subcutaneous tunneling to provide stability and enhance device support. All cerebral aneurysms were favorably embolized (eight complete and three neck remnants) by the combination of several additional devices due to the complex shape. Mechanical stent retrieval under an 8Fr balloon guiding catheter was successfully achieved by few runs (mean, two times; range, 1-3) within the proper time window (mean skin to puncture, 17 ± 4 min; mean puncture to recanalization, 25 ± 4 min). Each stent of the proximal ICA and direct CCF was satisfactorily deployed without catheter kick-back. All puncture sites were closed by direct suturing without complications

Conclusion: In the hybrid angiosuite, transcervical access via direct neck exposure is feasible in terms of device profile and support in which the femoral route cannot overcome unfavorable anatomy.

Does Cervical Sagittal Balance Affect a Vascular Tortuosity and Spontaneous Cervical Artery Dissection without Connective Tissue Disease?

전 효 섭 강원대병원

Byung-ju Park, Seung Jin Lee, HyoSub Jun

Department of Neurosurgery, Kangwon National University Hospital, Chuncheon, Korea

Objective: Higher vascular tortuosity may be associated with spontaneous cervical artery dissection. We hypothesized that cervical sagittal balance affect a weakening the vascular wall and consequently an arterial tortuosity and cervical dissection.

Methods: A retrospective analysis of data from 30 Cervical artery dissection (CAD) patients in whom magnetic resonance angiography (MRA) and cervical radiograph. Age— and sex—matched healthy adults who underwent MRA in a routine health examination were used as controls were obtained at the same time. The vascular tortuosity in MRA was measured automatically from the carotid artery(CA) and vertebral artery (VA) arteries. Vascular tortuosity index (VTI) was defined as: [(actual / Straight)—1×100] in each arteries. The radiographic parameters in cervical radiograph measured were C2—7 Cobb angle (cervical lordosis) and C2—7 sagittal vertical axis (SVA C2—7). The relationships between the parameters and VTI were analyzed with the Pearson correlation coefficient and multiple linear regression.

Result : The healthy group (n=30) had significantly lower VTI than CAD group (n=30). (mean $3.7 \pm 2.5 \text{ VS } 6.2 \pm 3.8$) The cervical lordosis was significantly smaller for the CAD compared with the control group (11.32 \pm 6.2 \pm vs 26.06 \pm 7.3 \pm). The SVA C2-7 was significantly greater for the CAD compared with the control group (10. 5 \pm 4.8 \pm mm vs 7.06 \pm 3.6 mm) the control group. Also, in each group, the VTI had significant correlations with the SVA C2-7(r= 0.428), (p \langle 0.01) and a close negative correlation existed between the VTI and cervical lordosis (r= -0.475), (p \langle 0.01).

Conclusion: Cervical sagittal balance could be one of the various factors that increased vertebral artery tortuosity and CAD.

Usefulness of Intraoperative Neurophysiologic Monitoring during Endovascular Treatment for Intracranial Vascular Lesions

심 재 현 순천향대 천안병원

Jaehyun Shim, Jaesang Oh, Hyunkjin Oh, Seokmann Yoon, Hackgun Bae Department of Neurosurgery, Soonchunhyang University Cheonan Hospital, Cheonan, Korea

Objective: Endovascular treatment (EVT) for intracranial vascular lesions have potentially risk of ischemic or hemorrhagic complications. Because most of procedures are performed under general anesthesia, intraoperative neurophysiological monitoring (IONM) is the only way to obtain information on neurological status. The propose of this study is to evaluate the usefulness of IONM during EVT.

Methods: A retrospective review of 149 cases of EVT with IONM for intracranial vascular lesions (131 intracranial aneurysms, 6 AVMs, 5 CCFs, and 7 AVFs) was performed. Somatosensory evoked potentials (SSEP) and motor evoked potentials (MEP) were used. A significant IONM changes were defined as ≥50% reduction in the amplitude of SSEP and/or a 10% delay in latency, and loss of MEP.

Result: Nineteen (12,8%) patients experienced IONM changes (SSEP 8/19; MEP 15/19). All IONM changes occurred during coil embolization in patients with intracranial aneurysms. The causes of IONM changes were categorized as follows; 3 of intraprocedural aneurysm rupture, 2 of during balloon remodeling, 2 of distal emboli, 4 of in-situ thrombosis, 5 of coil loop herniation to parent artery, 1 of compromise of anterior choroidal artery from coil mass, and 2 of false positive. In 16 of 19 patients with the IONM changes, the procedure were altered immediately. Among them, 7 patients showed full recovered SSEP and/or MEP and did not show neurological deteriorations. The remaining 9 patients did not recover IONM changes, and 6 had newly developed neurologic deficit. The symptoms were correlated with IONM changes. Two false negative results were found, and the specificity of IONM was 98.4%. One of them was a minor leak and the other one showed a perforator flow restriction, but the IONM did not change.

Conclusion: IONM is an effective monitoring tool to reduce complications during EVT for intracranial vascular lesions.

Progressive Occlusion of Small Saccular Aneurysms Incompletely Occluded after Stent-assisted Coil Embolization: Analysis of Related Factors and Long-term Outcomes

조 영 대 서울대병원

Young Dae Cho, Jeongjun Lee, Hyun-Seung Kang, Moon Hee Han Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea

Objective: Incompletely occluded aneurysms in coil embolization are subject to recanalization but occasionally progress to a totally occluded state. Deployed stents may actually promote thrombosis of coiled aneurysms. We evaluated outcomes of small aneurysms (<10 mm) wherein saccular filling with contrast was evident after stent-assisted coiling, assessing factors implicated in subsequent progressive occlusion,

Methods: Between September, 2012 and June, 2016, a total of 463 intracranial aneurysms were treated by stent-assisted coil embolization. Of these, 132 small saccular aneurysms displayed saccular filling with contrast in the immediate aftermath of coiling. Progressive thrombosis was defined as complete aneurysmal occlusion at the 6-month follow-up point. Rates of progressive occlusion and factors predisposing to this end were analyzed via binary logistic regression.

Result : In 101 (76.5%) of 132 intracranial aneurysms, complete occlusion was observed in follow-up imaging studies at 6 months. Binary logistic regression analysis indicated that progressive occlusion was linked to smaller neck diameter (OR=1.533; p=0.003), hyperlipidemia (OR=3.329; p=0.036) and stent type (p=0.031). The LVIS stent is especially susceptible to progressive thrombosis, more so than Neuroform (OR=0.098; p=0.008) or Enterprise (OR=0.317; p=0.098) stents. In 57 instances of progressive thrombosis, followed for \geq 12 months (mean, 25.0 \pm 10.7 months), 56 (98.2%) were stable, with minor recanalization noted once (1.8%) and no major recanalizations.

Conclusion: Aneurysms associated with smaller diameter necks, hyperlipidemic states, and LVIS stent deployment may be inclined to eventually thrombose, if occlusion immediately after stent-assisted coil embolization is incomplete. In such instances, excellent long-term durability is anticipated.

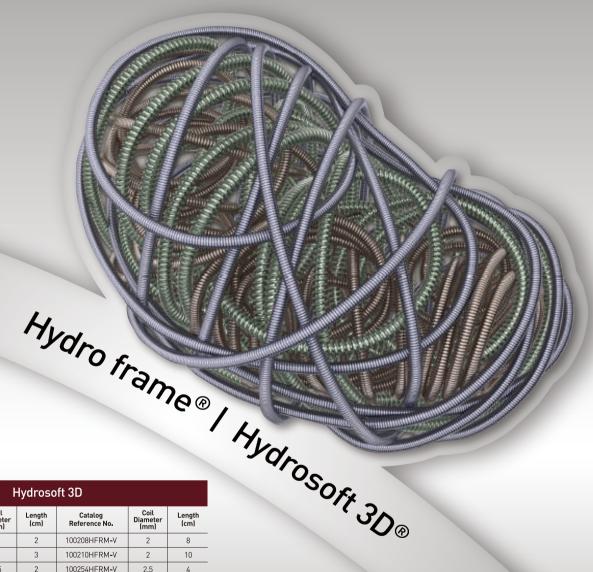
2017 대한뇌혈관내수술학회 정기학술대회 및 총회

인 쇄 2017년 12월 1일

발 행 2017년 12월 1일

발행처 대한뇌혈관내수술학회

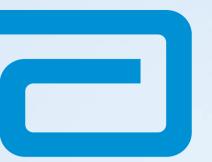
주 소 서울시 서초구 서초대로 350 (서초동 동아빌라트 2타운) 407호


제 작 엘에스커뮤니케이션즈

소 서울특별시 강동구 천호대로 1065 강동상떼빌 404호 TEL) 02) 476-6718

Hydrogel Coil Advancements

- •Hydrogel is progressively soft for confident coiling of high risk aneurysms
- •Hydrogel is as easy to use as bare platinum coil.


	Hydrosoft 3D					
	Catalog Reference No.	Coil Diameter (mm)	Length (cm)	Catalog Reference No.	Coil Diameter (mm)	Length (cm)
	100102HFRM-V	1	2	100208HFRM-V	2	8
	100103HFRM-V	1	3	100210HFRM-V	2	10
	100152HFRM-V	1.5	2	100254HFRM-V	2.5	4
	100153HFRM-V	1.5	3	100256HFRM-V	2.5	6
	100154HFRM-V	1.5	4	100258HFRM-V	2.5	8
	100202HFRM-V	2	2	100304HFRM-V	3	4
	100203HFRM-V	2	3	100306HFRM-V	3	6
	100204HFRM-V	2	4	100308HFRM-V	3	8
ı	40000/115014.1/	_	,	40004011551417	_	

Hydroframe						
Catalog Reference No.	Coil Diameter (mm)	Length (cm)	Catalog Reference No.	Coil Diameter (mm)	Length (cm)	
100405HFRM-V	4	5	100715HFRM-V	7	15	
100408HFRM-V	4	8	100728HFRM-V	7	28	
100510HFRM-V	5	10	100817HFRM-V	8	17	
100515HFRM-V	5	15	100833HFRM-V	8	33	
100612HFRM-V	6	12	100931HFRM-V	9	31	
100619HFRM-V	6	19	101036HFRM-V	10	36	

Clip technology for extravascular closure

StarClose SE

Secure¹

Easy

Extravascular

The security of suture

Perclose ProGlide

Suture-Mediated Closure System

Simple

Secure¹

Control

Seek & Feel the Difference

Random Break Deployment may ease coil repositioning during embolization¹

Source: Fluoroscopic image of Orbit Galaxy 9mm x 25cm in 10mm x 8mm Aneurysm model, Tokyo Science Center, 2017

Your optimal hypertension care with olmesartan family.

"Start with one pill, Control with one pill!"

OLOSTAR® Tab. Olmesartan + Rosuvastatin

ARB + Statin 복합제의 SUPER COMBI

