2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

[Theme]

Who should we protect in the era of Covid-19?

일시 I 2020년 11월 28일(토) 장소 I 인천 파라다이스시티호텔

주최 _ 대한뇌혈관내치료의학회 주관 대한신경외과학연구재단

존경하는 대한뇌혈관내치료의학회 회원 여러분!

코로나-19로 얼룩졌던 올해도 이제 얼마 남지 않았습니다. 올해는 평범한 일상조차도 특별해지는 한 해였던 것 같습니다. 이런 어려움 속에서도 환자 진료와 연구, 교육을 위해 헌신하고 계신 회원 여러분들께 존경과 감사의 말씀을 전합니다.

다가오는 2020년 11월 28일에 대한뇌혈관내치료의학회 정기학술대회 및 총회가 인천에서 개최됩니다. 이번 학술대회는 다학제학회로 회칙을 개정하고 처음 개최되는 정기학술대회로, 코로나-19시대를 살아가는 우리의 현실을 반영하여 "Who should we protect in the era of COVID-19?" 으로 주제를 정했습니다.

"코로나-19로 달라진 의료 환경에서 우리는 과연 환자와 의사를 어떻게 보호해야 하는가?"에 대해 COVID-19 환자 경험을 공유하고, 학회의 가이드라인을 정리해 보는 시간을 마련하고자 합니다. 또한, 뇌혈관내치료의 최대 단점인 방사선 노출로 부터 술자를 보호할 수 있을 혈관내 시술용 로봇 개발의 현주소와 미래의 가능성에 대해 저명한 국내외 연자분들의 강의를 준비하였습니다. 가까운 미래에 로봇시술이 현실화된다면 우리 분야가다시 한번 도약하는 계기가 될 것입니다.

의료정책 관련하여 정부정책에 깊이 관여하고 있는 관련 교수님들을 초청하여 심뇌혈관질환센터의 현황과 향후 방향에 대한 심포지엄을 준비하였습니다. 정책 방향에 대한 강의와 우리 학회의 제안 등 정책 토론이 흥미로울 것입니다. 또한 훌륭한 논문을 발표하여 본 학회가 수여하는 학술상을 수상한 저자가 회원들에게 수상 논문을 직접 발표하는 시간을 마련하였습니다. 이를 통해 뇌혈관내치료의 최신 지견을 업데이트하는데 도움이될 것입니다.

아직 COVID-19 유행이 종식되지 않았기에 온라인을 병행하여 준비하고 있으나, 상황이 좋아져서 많은 회원 여러분들을 영종도 파라다이스시티에서 직접 뵐 수 있기를 고대합니다

어려운 환경에서도 2020 정기학술대회 및 총회를 준비하느라 수고해 주신 학술이사, 총무이사를 비롯한 임원 진께 감사드리며, 학회를 위해 물심양면으로 지원해 주신 후원기업과 학회 회원 여러분께 감사드립니다.

> 대한뇌혈관내치료의학회 회 장 윤 석 만

2020~2021 대한뇌혈관내치료의학회 임원진

명예회장

직위	성명	소속
면세된자	백민우	인봉의료재단 뉴고려병원
명예회장	권도훈	울산대학교 서울이산병원
-1 T L		
회장		
직위	성명	소속
회장	윤석만	순천향대학교 천안병원
상임이사		
	니머	1. A
직위	성명	소착
총무	박석규	순천향대학교 서울병원
학술	권순찬	울산대학교병원
정책	신승훈	차의과대학교 분당차병원
재무	김영우	가톨릭대학교 의정부성모병원
수련교육	유승훈	울산대학교 강릉아산병원
	김태곤	차의과대학교 분당차병원
간행	하성곤	고려대학교 안산병원
	권현조	충남대학교병원
보험	정준호	연세대학교 세브란스병원
	박석규	순천향대학교 서울병원
대외협력	김성림	가톨릭대학교 부천성모병원
국제교류	정진영	연세에스병원
법제윤리	고준경	부산대학교병원
홍보	신희섭	강동경희대학교병원
전산정보	장경술	가톨릭대학교 인천성모병원
신신경도	신동성	순천향대학교 부천병원
회원관리	장인복	한림대학교 평촌성심병원
지크지테	남택균	중앙대학교병원
진료지침	최재형	동아대학교병원
연보 · 학회사편찬	임용철	아주대학교병원
진료심의	박중철	울산대학교 서울아산병원
되므면이	김문철	에스포항병원
전문병원	허준	명지성모병원
학술지편집	김대원	원광대학교병원
인증관리	이호국	한림대학교 강남성심병원
다기관임상	김범태	순천향대학교 부천병원
미래전략	권오기	분당서울대학교병원
국제학술대회	 신용삼	가톨릭대학교 서울성모병원
의학회	 장철훈	영남대학교병원
여의사위원회	 심숙영	인제대학교 서울백병원
심뇌혈관질환정책	 윤창환	분당서울대학교병원 순환기내과
뇌신경마취	전영태	분당서울대학교병원 마취통증의학과
의료기기연구	양수근	인하대학교 의과대학 의생명학과
뇌신경재활	김수아	순천향대학교 천안병원 재활의학과
다학제연구	이학승	원광대학교병원 신경과
다학제연구	 정용안	가톨릭대학교 인천성모병원 핵의학과
1 1 1 1		
다학제연구	이아름	순천향대학교 부천병원 영상의학과
광주/전라지회	김태선	전남대학교병원
대구/경북지회	<u> </u>	영남대학교병원
대전/충청지회	권현조	충남대학교병원
부산/울산/경남지회	정진영	연세에스병원
인천지회	현동근	인하대학교병원
감사	고정호	단국대학교병원
	이종영	한림대학교 강동성심병원
간사	오재상	순천향대학교 천안병원

2020~2021 대한뇌혈관내치료의학회 임원진

전임회장단

직위	성명	소속
초대, 제2대	백민우	인봉의료재단 뉴고려병원
제3대	김영준	단국대학교병원
제4, 5대	권도훈	울산대학교 서울아산병원
제6대	안성기 (작고)	(전) 한림대학교 성심병원
제7대	신용삼	가톨릭대학교 서울성모병원
제8대	권오기	분당서울대학교병원
제9대	김범태	순천향대학교 부천병원
제10대	성재훈	가톨릭대학교 성빈센트병원
제11대	고준석	강동경희대학교병원

운영위원

직위	성명	소속
	김성태	인제대학교 부산백병원
	김명진	가천대학교 길병원
	김종훈	영남대학교병원
학술위원회	박정현	한림대학교 동탄성심병원
크르지션의	반승필	분당서울대학교병원
	조수희	울산대학교 강릉아산병원
	최규선	한양대학교병원
	박상규	연세대학교 강남세브란스병원
재무위원회	이동훈	가톨릭대학교 성빈센트병원
	전진평	한림대학교 춘천성심병원
	김창현	양산부산대학교병원
	반승필	분당서울대학교병원
	조병래	가톨릭대학교 은평성모병원
전산정보위원회	문종현	광주기독병원
	전효섭	강원대학교병원
	신재전	가톨릭대학교 의정부성모병원
	조성윤	뉴고려병원
	이호준	가톨릭대학교 성빈센트병원
	신동성	순천향대학교 부천병원
	신희섭	경희대학교 강동병원
인증관리위원회	전홍준	한림대학교 강동성심병원
202의표면의	김소연	가톨릭관동대학교 국제성모병원
	오인호	중앙보훈병원
	안준형	한림대학교 평촌성심병원
	김영우	가톨릭대학교 의정부성모병원
	김태곤	차의과대학교 분당차병원
교과서편찬위원회	황교준	한림대학교 한강성심병원
	정준호	연세대학교 세브란스병원
	오재상	순천향대학교 천안병원
	남택균	중앙대학교병원
	박정수	전북대학교병원
국제교류위원회	신희섭	경희대학교 강동병원
	이동훈	가톨릭대학교 성빈센트병원
	정영진	영남대학교병원

송교석 메디픽셀 대표이사

학력

1990 - 1996 고려대학교 지질학 학사

2005-2006 카네기 멜론 대학교 컴퓨터과학 석사, 미국 피츠버그

주요 경력

1995 - 1996 LG전자 2000 - 2001 동양시스템즈 2001 - 2010 안랩(팀장)

2010 - 2014 노리타운(안랩 분사, 대표이사)

2017 - 현재 메디픽셀 대표 이사

활동

2018 - 2022 심혈관 빅데이터 기반 심장중재시술 보조 인공지능 및 반자율 시술도구 제어

로봇 시스템 개발 (범부처 과제 / 참여기관 / 2018.5.1 \sim 202 2 .12.31)

2019 - 2021 인공지능 기반의 완전폐쇄병변 재개통시술 보조 시스템 개발

(중기부 과제 / 주관기관 / 2019.6.1 ~ 2021.5.31)

2020 - 2021 인공지능 기반의 자동화된 심혈관질환 진단 보조 및 시술도구 추천 시스템 개발

(과기부 과제 / 주관기관 / 2020.4.1 ~ 2021.12.31)

2020 - 2034 심혈관질환의 진단 및 치료를 위한 다중융합영상 AI 솔루션 개발

(범부처 과제 / 주관기관 / 2020.9.1 ~ 2024.12.31)

Hong Soo Choi, Ph.D.

Professor & Head, Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST)

Education

2002	B.S., Mechanical Engineering, Yeungnam University, Korea
2003	M.S., Mechanical Engineering, WSU, Pullman, WA
2007	Ph.D., Mechanical Engineering, WSU, Pullman, WA, USA

Professional Experience

2007-2007	Postdoctoral Research Associate, Washington State University (WSU), Pullman, WA, USA
2007-2009	Postdoctoral Scholar, University of California, Davis, CA, USA
2009-2010	Senior Researcher, Korea Institute of Machinery & Materials (KIMM), Daejeon, Korea
2010-2014	Assistant Professor, DGIST, Daegu, Korea
2014-2018	Associate Professor (Early tenure and promotion), DGIST, Daegu, Korea
2018-2019	Visiting Professor, Korea Brain Research Institute, Daegu, Korea
2013-Present	Co-Director, DGIST-ETH Microrobot Research Center (DEMRC), DGIST, Daegu, Korea
2017-Present	Director, Global Research Laboratory, DGIST, Daegu, Korea
2018-Present	Professor (Early promotion), Department of Robotics Engineering, DGIST, Daegu, Korea
2019-Present	Head, Department of Robotics Engineering, DGIST, Daegu, Korea
2019-Present	Founder and Co-CEO, Im Systems, Daegu, Korea

Daniel H. Kim, MD, FAANS, FACS

Current Position
Professor, Department of Neurosurgery
Director of Microsurgical Robotics Lab
Director of Spinal Neurosurgery and Rec

Director of Spinal Neurosurgery and Reconstructive Peripheral Nerve Surgery, Memorial Hermann Healthcare System, Mischer Neuroscience Institute, University of Texas Health Science Center, Houston, TX, USA

Adjunct Professor, Departments of Bioengineering and Electrical Engineering Computer Science. Rice University, Houston, TX, USA

Education

1981-1985	Honors Bachelor of Science, Chemical Engineering, University of Oklahoma, Oklahoma City, OK
1985-1989	Doctor of Medicine, Tulane University School of Medicine, New Orleans, LA
1989-1990	Internship, General Surgery, Ochsner Foundation Hospital, New Orleans, LA
1990-1995	Residency, Neurosurgery, Louisiana State University, New Orleans, Louisiana
1997-1998	Fellowship, Complex Reconstructive Spinal Surgery, Departments of Neurosurgery and Orthopedics,
	University of Florida, Gainesville, FL

Academic Positions

Academic F	ositions
2015-present	Nancy, Clive and Pierce Runnells Distinguished Chair in Neuroscience of the Vivian L. Smith Center for Neurologic Research, University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX
2012-present	Professor, Director, Spinal Neurosurgery and Reconstructive Peripheral Nerve Surgery. Memorial Hermann Healthcare System, Mischer Neuroscience Institute, Department of Neurosurgery, University of Texas at Houston, Houston, TX
2007-2012	Professor, Director, Spinal Neurosurgery and Reconstructive Peripheral Nerve Surgery, Department of Neurosurgery, Baylor College of Medicine, Houston, TX Professor, Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX
2011-present	Adjunct Professor, Departments of Bioengineering and Electrical Engineering Computer Science, Rice University, Houston, TX
2011-2012	Adjunct Professor, Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX
2006-2007	Director of Spine Surgery, Department of Neurosurgery, Ochsner Clinic Foundation, New Orleans, LA
2005-2006	Professor, Director, Spinal Neurosurgery and Reconstructive Peripheral Nerve Surgery, Department of
	Neurosurgery, Stanford University Medical Center, Stanford, CA
2001-2005	Associate Professor, Director, Spinal Neurosurgery and Reconstructive Peripheral Nerve Surgery, Department of Neurosurgery, Stanford University Medical Center, Stanford, CA

이건세

건국대 의학전문대학원 예방의학교실 교수

학력

1982-1989 서울대학교 의과대학 의학사 1993-1994 서울대학교 의과대학원 의료관리학 석사 1994-1999 서울대학교 의과대학원 의료관리학 박사

주요 경력

2005-2008 2008-현재 2002-2004 2005-2005 2005-2006 2005-2010 2006-2009 2008-2010 2009-2013 2012-2012 2012-2013 2013-2015 2015-2016 2016-2017 2016-2018 2017-2018 2017-2018 2017-2019 2018-2019 2018-2019	건국대학교 의과대학 보교수 건국대학교 의과대학 교수 국립암센터 암조기검진사업지원평가단 위원 한국보건산업진응원 농어촌의료서비스개선사업 중앙평가위원 서울의료원 부설연구소 정책연구실장 질병관리본부 예방접종등록평가사업단 자문위원 건강보험심사평가원 심사평가연구실장 보건복지부 권역심뇌혈관센터 선정 평가위원 질병관리본부 심뇌혈관질환센터 시설, 장비 심의위원 서울의료원 부설연구소 정책연구실장 보건복지부 권역심뇌혈관센터 시설, 장비 심의위원 서울의료원 부설연구소 정책연구실장 서울시 공공보건의료지원단장 건강보험심사평가원 중앙평가위원 국립재활원장 권역재활병원 운영발전위원회 서울대학교병원장 서울대학교병원 공공보건의료정책자문위원 한국보건의료연구원 연구기획자문단 정부업무평가위원장(국무총리실) 정부업부평가 국정과제 평가전문위원교육부장관 국립대학병원 경영평가 위원 대통령직속 정책기획위원회 위원 건강보험심사평가원 객원연구위원 사회보장위원회 커뮤니티케어전문위원회 위원장 보건복지부 일차의료만성질환관리 취진위원회 위원장
2018–2020	보건복지부 보건의료정책심의위원회 위원

배희준

서울대학교 의과대학 신경과 교수 분당서울대병원 경기권역심뇌혈관센터장 보건복지부 심뇌혈관관리 중앙지원단장

학력

1998 서울대학교 자연대학 의예과 및 의과대학 의학과 (의학사)

2000 서울대학교 의과대학원 석사 (신경과학 전공) 2003 고려대학교 의과대학원 박사 (예방의학 전공)

주요 경력

1998 서울대학병원 신경과 전공의 수료 및 전문의 취득

1998 서울대학병원 신경과 뇌졸중 전임의

1999-2005 을지병원 신경과 과장

2004 미국 시카고 일리노이 주립대학 뇌졸중 연구센터 박사 후 연구원

2006-2012분당서울대학교병원 신경과 부교수2012-현재분당서울대학교병원 신경과 교수2016-2020분당서울대학교병원 신경과 과장2016-현재경기권역심뇌혈관센터 센터장2020-현재심뇌혈관질환관리 중앙지원단장

활동

대한치매학회 정보이사

대한노인병학회 간행위원

대한뇌졸중학회 총무이사

대한뇌졸중학회 진료지침위원회 위원장

세계뇌졸중학회 조직위 운영위원회 위원

대한노인신경의학회 국제이사

대한신경과학회 기획이사

대한신경과학회 정책이사

질병관리본부 심뇌혈관질환 종합대책 실무 위원회 위원

질병관리본부 심뇌혈관질환센터 시설.장비 심의위원회 위원

질병관리본부 심뇌혈관질환 극복을 위한 중장기 연구로드맵 기획위원

보건복지가족부 국민건강증진 종합계획 수립 위원

응급의료제도개선협의회 및 실무TF 위원

건강보험심사평가원 신경과 자문위원

대한의학회 임상진료지침 개발연구전문위원회 위원

대한의학회 임상진료지침 실행위원회 위원

현 Journal of Stroke 편집위원

현 대한뇌졸중학회 부이사장

임 준

서울시립대학교 도시보건대학원 교수 국립중앙의료원 – 공공보건의료지원센터 센터장

학력

1995 고려대학교 의과대학 의학사

2001 서울대학교 대학원 의학석사 (의료관리학 전공) 2005 서울대학교 대학원 의학박사 (예방의학 전공)

주요 경력

1999 - 2002 서울대학교 의과대학 의료관리학교실 전공의

2002 - 2003 한국보건산업진흥원 책임연구원

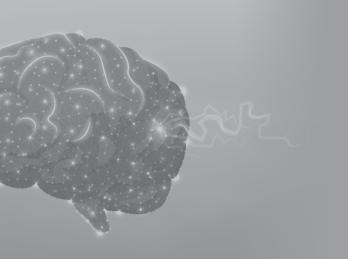
2003 - 2018 가천대학교 의과대학 교수

2009 - 2010 University of Massachusetts, Lowell 2014 - 2018 인천광역시 공공보건의료지원단 단장

2018 - 현재 서울시립대학교 도시보건대학원 교수

2018 - 현재 국립중앙의료원 공공보건의료지원센터 센터장

프로그램


08:30-08:45	Registration		
08:45-09:00	Opening Remark	윤석만(대한뇌혈관내치료의학회 회장)	
	Congratulatory Remark	이일우(대한신경외과학회 회장)	
09:00-10:20	Free paper I (Aneurysm)	좌장: 전영일(건국대), 권현조(충남대)	
09:00-09:10	Endovascular treatment of blood blister-like aneurysm in internal carot artery: Single center experience	id 김성태(인제대학교 부산백병원) Panet 김종훈(영남대학교병원)	16
09:10-09:20	Endovascular treatment of wide-necked aneurysm of bifurcated arte with the Neuroform Atlas stent	ry 전홍준(한림대학교 강동성심병원) Pana: 박상규(연세대학교 강남세브란스병원)	17
09:20-09:30	Efficacy and safety of Y-stent assisted coiling in cerebral aneurys embolization	m 이성호(순천향대학교 천안병원) Pand: 박정현(한림대학교 동탄성심병원)	18
09:30-09:40	Spontaneous subarachnoid hemorrhage that is presumed arising fro isolated middle cerebral artery dissection and rupture: 2 cases	m 김성태(인제대학교 부산백병원) Panel: 김명진(가천대학교 길병원)	19
09:40-09:50	Distal stenting technique for the coil embolization of early middle cerebrartery branch aneurysms	al정은오(충남대학교병원)Panel: 김소연(기톨릭관동대학교국제성모병원)	20
09:50-10:00	Unexpected neurological deterioration after SAC of UIA: Transient glob vasospasm	al 윤원기(고려대학교 구로병원) Panel: 김성태(인제대학교 부산백병원)	21
10:00-10:10	Short learning curve of endovascular therapy for inexperience neurosurgeon	ed 조진모(가톨릭관동대학교 국제성모병원) Panel: 신동성(순천향대학교 부천병원)	22
10:10-10:20	Effect and safety of tailored antiplatelet therapy in stent-assisted coilir for unruptured aneurysm: A nationwide registry study	ng 황교준(분당제생병원) Panel: 전홍준(한림대학교 강동성심병원)	23
10:20-10:40	Coffee break		
10:40-11:40	Symposium I. NeuroEndovascular Therapy in the Future	좌장: 신용삼(가톨릭대), 박석규(순천향대)	
10:40-11:00	Robotic-assisted Intervention	송교석(메디픽셀)	27
11:00-11:20	2. Development of Magnetically Controlled Guidewire Microrobots for Vascular Interventions	or 최홍수(대구경북과학기술원)	28
11:20-11:40	3. Robotic-assisted Neuroendovascular Surgery Daniel H	I, Kim (University of Texas at Houston, USA)	29
11:40-13:00	Luncheon Seminar	좌장: 윤석만(순천향대), 권순찬(울산대)	
11:40-12:00	1. 심뇌혈관질환의 국가정책방향 이건	세(건국대 의학전문대학원 예방의학교실)	33
12:00-12:20	2. 심뇌혈관센터 중앙지원단 및 권역 심뇌혈관센터의 역할	배희준(서울대 신경과)	39
12:20-12:40	3. 지역심뇌혈관센터	임준(서울시립대 도시보건대학원)	40
12:40-13:00	4. 심뇌혈관질환정책에 대한 대한뇌혈관내치료의학회의 제안	신승훈(차의과학대)	49
13:00-13:10	Photo time and short break		
13:10-14:00	Scientific Seminar (Presentation by KoNES awardee and Panel Discussion)	좌장: 김범태(순천향대), 김대원(원광대)	
	1. 명지성모병원 남천 학술상 Comparison of stent-assisted and no-stent coil embolization for safet and effectiveness in the treatment of ruptured intracranial aneurysms	윤원기(고려대학교 구로병원) Y Panel: 허준(명지성모병원)	53
	2. 에스포항병원 학술상 (JCEN부문) Long-term Prognosis of Patients Who Contraindicated for Intravenous	오재상(순천향대학교 천안병원) Panel: 허원(한일병원)	54
	Thrombolysis in Acute Ischemic Stroke		
	Thrombolysis in Acute Ischemic Stroke 3. 에스포항병원 학술상 (SCI부문) Mechanical thrombectomy in basilar artery occlusion: clinical outcome related to posterior circulation collateral score	박정수(전북대학교병원) Panel: 홍대영(에스포항병원)	55

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

	4. 연세에스병원 학술상 Advantages of Coil Embolization Performed Immediately after Diagnostic Cerebral Digital Subtraction Angiography in Unruptured Intracranial Aneurysms: Patients' Perspective	김종훈(영남대학교병원) Panel: 정진영(연세에스병원)	59
14:00-15:00	Free Paper II (AVM, AVF, etc.)	t: 성재훈(가톨릭대), 김문철(에스포항병원)	
14:00-14:10	Use of prasugrel in flow diverting stents for cerebral aneurysms	김강민(서울대학교병원) Panel: 정준호(연세대학교 세브란스병원)	62
14:10-14:20	FRED for the treatment of large and giant intracranial aneurysms: Incidence of and risk factors for procedure-related complications	정준호(연세대학교 세브란스병원) Panel: 조수희(울산대학교 강릉이산병원)	63
14:20-14:30	Recurrence after Pipeline embolization device for vertebrobasilar dolichoectasia: What can/should we do next?	김민수(가톨릭대학교 의정부성모병원) Panel: 윤원기(고려대학교 구로병원)	64
14:30-14:40	Transarterial embolization through the infraorbital artery of the ethmoidal dural arteriovenous fistula causing recurrent epistaxis: Case report and review of the literature	권민용(계명대학교 동산병원) Panel: 이광호(경상대학교병원)	65
14:40-14:50	Long-term clinical and angiographic outcome of angioplasty and stenting for intracranial stenosis	김재호(연세대학교 강남세브란스병원) Panel: 박정수(전북대학교병원)	66
14:50-15:00	Steroid can induce paraplegia in spinal dural arteriovenous fistula: Case report	이무하(순천향대학교 서울병원) Panel: 문종현(광주기독병원)	67
15:00-15:20	Coffee Break		
15:20-16:10	Symposium II. Neuro Endovascular Therapy in era of COVID-19	좌장: 권오기(서울대), 장철훈(영남대)	
15:20-15:35	1. Reviews of COVID-19 Focus on Neurovascular Presentation	오세양(인하대)	71
15:35-15:50	2. Sharing Experiences of Neuroendovascular Surgery in COVID-19 patient or suspected	김성림(가톨릭대)	72
15:50-16:10	3. Prevention and Control of COVID-19 in Neuroendovascular Surgery: KoNES' Guideline	남택균(중앙대)	73
16:10-17:10	Free Paper III (Ischemia)	좌장: 유승훈(울산대), 강현승(서울대)	
16:10-16:20	The usefulness of emergent medical system in patients with acute ischemic stroke – a retrospective single center experience	이현곤(인제대학교 해운대백병원) Panel: 이종영(한림대학교 강동성심병원)	76
16:20-16:30	Preliminary experience of Neuroform Atlas stenting as a rescue treatment after failure of mechanical thrombectomy caused by residual intracranial atherosclerotic stenosis	이호준(가톨릭대학교 성빈센트병원) Panel: 신희섭 (경희대학교 강동경희대병원)	77
16:30-16:40	Mechanical thrombectomy of M2-occlusion for minor symptom patients	이동훈(가톨릭대학교 성빈센트병원) Panel: 구해원(인제대학교 일산백병원)	78
16:40-16:50	Impact of time interval between index event and stenting on periprocedural risk in patients with symptomatic carotid stenosis	황교준(분당제생병원) Panel: 이현곤(인제대학교 해운대백병원)	70
16:50-17:00	Feasibility and safety of FiRst stEnting strategy witHout retrieval (FRESH) using Solitaire FR as a treatment for emergent large vessel occlusion due to underlying intracranial atherosclerosis	김종훈(영남대학교병원) Panel: 이호준 (가톨릭대학교 성빈센트병원)	80
17:00-17:10	Factors associated with procedural thromboembolisms after mechanical thrombectomy for acute ischemic stroke	김승환(성균관대학교 삼성창원병원) Panel: 오재상(순천향대학교 천안병원)	81
17:10-17:30	General Assembly 박	석규(대한뇌혈관내치료의학회 총무이사)	

프로그램

17:30-18:20	Poster Session	좌장: 정진영(연세에스병원), 장경술(가톨릭대)
	P-1 Advanced management of emergent large vessel occlusio intracranial atherosclerosis in acute ischemic stroke	n with 노윤호(순천향대학교 천안병원) 85
	P-2 The staged embolization for ruptured AChoA aneurysms maximum intraoperative monitoring: Two cases	s with 신동성, 김범태(순천향대학교 부천병원) 86
	P-3 Histological study of the normal vertebral artery –Induction dissecting aneurysms-	site of 신동성, 김범태(순천향대학교 부천병원) 87
	P-4 Tentorial dural arteriovenous fistula supplied by the artery of Da and Schechter in the fetal type posterior cerebral artery	avidoff 권민용(계명대학교 동산병원) 88
18:20	Closing Remark	권순찬(대한뇌혈관내치료의학회 학술이사)
18:30	KoNES Awards and Official Dinner	

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

Free paper I (Aneurysm)

좌장: 전영일(건국대), 권현조(충남대)

Endovascular treatment of blood blister-like aneurysm in internal carotid artery: Single center experience 김성태(인제대학교 부산백병원)

Panel: 김종훈(영남대학교병원)

Endovascular treatment of wide-necked aneurysm of bifurcated artery with the Neuroform Atlas stent 전홍준(한림대학교 강동성심병원)

Panel: 박상규(연세대학교 강남세브란스병원)

Efficacy and safety of Y-stent assisted coiling in cerebral aneurysm embolization 이성호(순천향대학교 천안병원)

Panel: 박정현(한림대학교 동탄성심병원)

Spontaneous subarachnoid hemorrhage that is presumed arising from isolated middle cerebral artery dissection and rupture: 2 cases 김성태(인제대학교 부산백병원)

Panel: 김명진(가천대학교 길병원)

Distal stenting technique for the coil embolization of early middle cerebral artery branch aneurysms 정은오(충남대학교병원)

Panel: 김소연(가톨릭관동대학교 국제성모병원)

Unexpected neurological deterioration after SAC of UIA: Transient global vasospasm 윤원기(고려대학교 구로병원)

Panel: 김성태(인제대학교 부산백병원)

Short learning curve of endovascular therapy for inexperienced neurosurgeon 조진모(가톨릭관동대학교 국제성모병원)

Panel: 신동성(순천향대학교 부천병원)

Effect and safety of tailored antiplatelet therapy in stent-assisted coiling for unruptured aneurysm: A nationwide registry study 황교준(분당제생병원)

Panel: 전홍준(한림대학교 강동성심병원)

Endovascular treatment of blood blister-like aneurysm in internal carotid artery: Single center experience

Sung-Tae Kim, Young-Woo Sim, Bong-Ki Jo, Hae Woong Jeong, Young-Gyun Jeong

Department of Neurosurgery, Inje University Busan Paik Hospital

Objective: Treatment of blood blister-like aneurysm (BBA) is still challenging situation to anyone. The purpose of this study was to report our recent experience of endovascular treatment of BBAs in internal carotid artery.

Methods: Between January 2014 and June 2019, we underwent 8 BBAs those were treated using endovascular treatment option. We investigated demographics data, neurological status, treatment details for the BBAs and the clinical outcome.

Result: Six patients were female and mean age was 51.1 years old, ranged from 37 to 69. Hunt and Hess grade was IX in 2 patients, III in 2 patients, and II in 3 patients and I in 1 patient. In 7 cases, endovascular treatment was attempted as a first-line treatment option. The other 1 case was rescue treatment after surgery. Stenting with coils was performed in 7 patients (1 stent in 5 patients, 2 stents in 1 patient, and 3 stents in 1 patient), and just simple coiling was in 1 patient who had increased ICP and eventually expired because of it. Thromboembolic event not affecting clinical outcome occurred in 3 cases (37.5%). Recurrence occurred in 3 cases out of 7(42.8%). The mean time-interval to detect recurrence was 16.3 day, ranged from 7 to 28. Rebleeding occurred in 1 cases. Superficial temporal artery-radial artery-middle cerebral artery anastomosis and endovascular aneurysm trapping was performed in 2 recurred BBAs, and just additional coil packing in 1. Mean clinical follow-up period of the 7 patients was 39 months, ranged from 17 to 48 months. There was no additional recurrence. Six patients are in good condition (mRS≤2). The other patient is in severe disabled condition. (mRS: 4).

Conclusion: Endovascular treatment of BBA is effective, but has high short-term recurrence rate. When treating BBA using endovascular option, consideration of retreatment is needed.

Endovascular treatment of wide-necked aneurysm of bifurcated artery with the Neuroform Atlas stent

Hong Jun Jeon

Department of Neurosurgery, Kangdong Sacred Heart Hospital, Hallym University College of Medicine

Objective: Bifurcated cerebral artery aneurysms often occur in small parent vessels and are incorporated with the orifice of acute-angled efferent branch vessels. If the wide neck was combined, endovascular coiling remains technically challenging. This study sought to evaluate the safety and effectiveness of the low-profile Neuroform Atlas stent for the treatment of those aneurysms.

Methods: Thirty-eight intracranial aneurysms, including 21 unruptured and 17 ruptured aneurysms, were treated with Neuroform Atlas stent-assisted coil embolization. The clinical and angiographic outcomes were retrospectively analyzed.

Result: A total of 38 stents in 34 patients (mean age, 57 years; male/female ratio, 10:24) were successfully delivered to the target aneurysms, and the technical success rate was 100%. There was complete occlusion in 30 (78.9%) of 38 cases, neck remnants in 7 (18.4%) cases, and partial occlusion in 1 (2.6%) cases. Treatment-related morbidity (grade 3 hemiparesis) occurred in 1 patient (2.6%). Except for 1 patient who had treatment-related morbidity, none of the other patients with unruptured aneurysms developed new neurologic symptoms at discharge. 12 of the 17 patients with ruptured aneurysms had good outcomes (Glasgow Outcome Score, 4 or 5) at the latest follow-up (mean, 12 months; range, 3–18 months), and 1 patient died from an initial SAH. Posttreatment control angiograms revealed complete occlusion in 33 (86.8%), neck remnant in 2 (5.2%), and incomplete occlusion in 0 aneurysms. At least 1 follow-up catheter or MR angiogram was available in 92.1% (n _ 35) (mean, 9 months; range, 6–18 months). There were not any recurrences (0.0%).

Conclusion: The Atlas Neuroform stent provided excellent trackability and deliverability and is safe and effective for the treatment of wide-necked bifurcation aneurysms with incorporated parent vessel.

Efficacy and safety of Y-stent assisted coiling in cerebral aneurysm embolization

Seong Ho Lee, Jae-Sang Oh, Seok-Mann Yoon

Department of Neurosurgery, Soonchunhyang University Cheonan Hospital

Objective: Stent-assisted coiling on intracranial aneurysm has been considered as an effective technique and has made the complex aneurysms amenable to coli embolization. The Y-stent-assisted technique has been used for stent-assisted coil embolization for challenging bifurcation aneurysms. We report a single center experience using the various stent for "Y-stent"-assisted coiling embolization of bifurcation aneurysms.

Methods: From January 2013 to August 2020, single center provided retrospective data on patients who underwent Y-stenting. 31 patients (15 men, 16 women; mean age 53.7) harboring 30 unruptured aneurysms and 1 ruptured aneurysm were treated by Y-stent coiling. Procedure-related complication, immediate and post-treatment angiographic results, clinical outcomes, and imaging follow-up were evaluated.

Result: 4 basilar tip(13%), 7 middle cerebral artery (22.5%), 15 anterior communicating artery (48.3%), 2 pericallosal (6.5%), and 3 internal carotid aneurysm(9.7%). The mean largest diameter of aneurysm was 5.9 mm, and the mean size of neck was 4.6 mm. 19 aneurysms were treated by Y-stenting from first (61%), and 12 were treated by Y stenting after other treatment (previous clipping or coiling) (39%).

Y-stenting technique was open cell followed by closed cell stent in 6 cases (19.4%), open cell followed by open cell in 8 cases (25.8%), closed cell followed by open cell in 2 cases (6.5%), and closed cell followed by closed cell in 15 cases (48.3%). 26 LVIS Jr, 24 ATLAS, 11 Enterprise and 1 Solitaire stents were successfully deployed with 4 technical issue (13%).

3 procedural complications occurred (9.7%); one patient (ruptured aneurysm) transient in-stent thrombosis resolved with the intravenous infusion of a glycoprotein IIb/IIIa inhibitor. 2 patients suffered intraoperative vessel injury. (1 patient resolved conservative treatment, but the other patient developed NPH with mild symptom.)

Immediate obliteration grade (Raymond-Roy Occlusion Classification) 1 was achieved in 14 cases (45.2%), grade 2 was 8 cases (25.8%), grade 3a was 5cases (16%), and grade 3b was 4case (13%). Twenty-four patients had imaging follow-up (mean 11.3 months). Complete angiographic occlusion (Raymond-Roy Occlusion Classification I) without stent in stenosis was observed in 23 patients (95.8%). No clinical deterioration was achieved in 30 cases (96.8%), except one intraoperative vessel injury case.

Conclusion: Y-stent-assisted coiling of aneurysms was relatively low rate of complications. Follow-up imaging demonstrated high rates of angiographic occlusion rates.

Spontaneous subarachnoid hemorrhage that is presumed arising from isolated middle cerebral artery dissection and rupture: 2 cases

Sung-Tae Kim, Young Woo Sim, Bong Ki Jo, Hae Woong Jeong, Young Gyun Jeong

Department of Neurosurgery, Inje University Busan Paik Hospital

Objective: Spontaneous isolated middle cerebral artery (MCA) dissection causing hemorrhagic stroke is uncommon. Besides, it is unstable, so, we should consider each patients's neurologic status and 'custom-made' treatment strategy. Here, we present our 2 cases of spontaneous subarachnoid hemorrhage (SAH) presumed arising from isolated middle cerebral artery dissection and rupture.

Methods: Case 1. 32 year-old male patient presented with drowsy mentality. On brain CTA, thick SAH and right MCA superior trunk fusiform dilatation was detected. On cerebral angiography, right MCA early bifurcation and small sized superior trunk that contributed orbitofrontal and prefrontal branched had fusiform aneurysm. At that time, we thought it may be tolerable since the territory was not so large and seemed not the eloquent area. Therefore, we occluded the fusiform aneurysm using coils. Territorial cerebral infarction followed after the internal trapping, but the patient recovered well and discharged without any neurologic defect. We investigated what might be the cause of the dissecting aneurysm, but did not find anything. During 6 years of clinical follow-up period, Emotional control issue was the only problem.

Result: Case 2. 31 year-old female patient presented with semi-comatose mentality. CT scan at the local clinic revealed thick SAH and intracerebral hemorrhage in temporal lobe having contrast enhancing lesion. Pupil dilatation progressed immediately, so emergency craniectomy was followed by cerebral angiography. There was a pseudoaneurysm in distal MCA (M3) that contributed central branch. We thought we did not have any option and occluded it including distal branch using coils. Unfortunately, she did not recovered in spite of 1 month of ICA care. We did not find any systemic problem and the pseudoaneurysm seemed to occur due to isolated middle cerebral artery dissection.

Conclusion: Isolated middle cerebral artery dissection accompanied by bleeding may be unstable, Therefore, we should consider many things from primary care to surgical option, like combination of endovascular treatment and bypass surgery.

Distal stenting technique for the coil embolization of early middle cerebral artery branch aneurysms

Eun-Oh Jeong, Hyon-Jo Kwon, Hyeon-Song Koh

Department of Neurosurgery, Chungnam National University Hospital

Objective: Considering the ischemic surgical risks during clipping of early middle cerebral artery (MCA) branch aneurysms by adjacent lenticulostriate artery, coil embolization can be a good option. However, due to the small diameter and acute angle of the branches, to deploy the stent adequately is sometimes a challenge for the operators. We applied the distal stenting technique to these aneurysms and reports the results.

Methods: We used distal stenting technique for 14 wide neck MCA aneurysms originating from early branch with a diameter of 1.5mm or less from December 2018 to October 2020. Ten aneurysms (71.4%) were originated from a frontal branch, while 4 (28.6%) from temporal branch. The average sizes of dome, neck and depth were 4.0 mm (3.0-5.6 mm), 3.4 mm (2.4-4.3 mm), and 2.8 mm (1.8-3.7 mm), respectively.

Result: Stents were deployed successfully in 13 aneurysms (92.9%) and proximally than the aneurysmal neck in one aneurysm (7.1%). On postoperative angiogram, 8 aneurysms (57.1%) were completely occluded, neck remnants in 5 (35.7%), and flow in the sac in 1 (7.1%). Follow up magnetic resonance angiography was performed in 8 and no flow signal void in the sac was observed. On follow up digital subtraction angiography after average 13.5 months (12-16 months) for the 6 aneurysms, branches were preserved well and neck remnants were noted in 2 aneurysms. There were no thromboembolic events during clinical follow up.

Conclusion: Distal stenting technique using open-cell stent can be a good option for the coil embolization of small early branch aneurysms of MCA.

Unexpected neurological deterioration after SAC of UIA: Transient global vasospasm

Won Ki Yoon

Department of Neurosurgery, Korea University Guro Hospital

Objective: Here I present two cases of unusual and unique symptomatic complication after coil embolization of unruptured wide-necked intracranial aneurysms.

Methods: The patients had unruptured aneurysms on their supraclinoid ICA. They were treated with stent assistance technique using Low profile visualized intracranial stent (LVIS blue stent; Microvention). Immediate after the procedure, the patients were awaken without any additional neurological symptom and their brain CT showed mild brain swelling on ipsilateral hemisphere. A few hours later, they showed typical hemispheric dysfunction including deteriorated mental status, contralateral hemiplegia and neglect. Follow-up images including perfusion CT and diffusion MRI showed decreased brain perfusion status and aggravated post-procedure embolic diffusion restriction. Non-contrast CT scan revealed aggravation of ipsilateral brain swelling and SAH mimicking contrast agent leakage in subarachnoid space.

Result: Endovascular treatment with IA nimodipine in first case and IA tirofiban in second case was performed. And conservative care including hydration and blood pressure elevation was carried out. The patients started to show clinical improvement on 2nd and 3rd day and in a few days more, completely recovered from the initial neurological deficit in abrupt fashion.

Conclusion: The presentation would show the each case and lead you to consideration points for cause, clinical diagnosis and treatment. The cause is still unveiled and limited search on Pubmed failed to discover any related reports.

Short learning curve of endovascular therapy for inexperienced neurosurgeon

Jin Mo Cho

Department of Neurosurgery, Catholic Kwandong University International St, Mary's Hospital

Objective: Several studies have shown that procedural outcomes are better at high-volume institutions, possibly due to greater physician experience (learning) or practice (repetition). Our purpose was to determine whether outcomes for coil embolization improved with the experience of the practitioner, after adjusting for the perceived risk of treatment.

Methods: We identified all endovascular therapy for aneurysms treated with coil embolization at our institution from 2015 through 2000. Modified Raymond–Roy occlusion classification (MRROC) was estimated for all aneurysm and complication was inspected.

Result: One hundred aneurysm was treated and 86 aneurysms was MRROC grade I, 11 aneurysm was grade II. Only 3 aneurysm was grade III (1 IIIa, 2 IIIb). Only one complication (1%) occurred with coil embolization.

Conclusion: The risk of complications with coil embolization of aneurysm appears to very low. And learning curve for aneurysm coiling was short. It may be due to excellence of coil and devices.

Effect and safety of tailored antiplatelet therapy in stentassisted coiling for unruptured aneurysm: A nationwide registry study

Gyo Jun Hwang¹, Jinnie Rhee², Bum Tae Kim³, Jun Seok Koh⁴, Seok Mann Yoon⁵

¹Department of Neurosurgery, Bundang Jesaeng General Hospital ²National Evidence—based Healthcare Collaborating Agency ³Department of Neurosurgery, Soonchunhyang University Bucheon Hospital ⁴Department of Neurosurgery, Kyung Hee University Hospital at Kangdong ⁵Department of Neurosurgery, Soonchunhyang University Cheonan Hospital

Objective: Antiplatelet therapy in which its regimens are tailored based on platelet function testing is being increasingly used in neurointervention practice. This nationwide registry study evaluated effect and safety of the tailored therapy in patients undergoing stent-assisted coiling for unruptured aneurysm compared with conventional therapy using standard antiplatelet regimen.

Methods: This study enrolled 1686 patients in 44 participating centers who received stent-assisted coiling for unruptured aneurysm between January 1, 2018 and December 31, 2018. Conventional group (924 in 19 centers) used standard regimen (aspirin and clopidogrel) in all patients. Antiplatelet regimen was selected based on platelet function testing (standard regimen for clopidogrel responder; adding cilostazol or replacing clopidogrel with other thienopyridines [ticlopidine, prasugrel, or ticagrelor] for clopidogrel non-responder) in tailored group (762 in 25 centers). Primary outcome was thromboembolic events. Secondary outcomes were bleedings and postprocedural neurological aggravation. Outcomes within 30 days after coiling were compared using logistic regression analysis.

Result: The thromboembolic event rate was low in the tailored group compared with the conventional group (30/762 [3.9%] vs 63/924 [6.8%], adjusted odds ratio [OR] 0.560, 95% confidence interval [CI] 0.359-0.875, p=0.001). The bleedings were not different between the tailored and conventional groups (62/762 [8.1%] vs 73/924 [7.9%], adjusted OR 0.790, 95% CI 0.469-1.331, p=0.376). Postprocedural neurological aggravation was less frequent in the tailored group (12/762 [1.6%] vs 34 [3.7%], adjusted OR 0.252, 95% CI 0.112-0.568, p=0.001).

Conclusion: The tailored antiplatelet therapy in stent-assisted coiling for unruptured aneurysm reduced the thromboembolic events and neurological aggravation without increasing bleeding.

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

Symposium I. NeuroEndovascular Therapy in the Future

좌장: 신용삼(가톨릭대), 박석규(순천향대)

1. Robotic-assisted Intervention 송교석(메디픽셀)

2. Development of Magnetically Controlled Guidewire Microrobots for Vascular Interventions 최홍수(대구경북과학기술원)

3. Robotic-assisted Neuroendovascular Surgery Daniel H. Kim(University of Texas at Houston, USA)

Robotic-assisted intervention

송교석

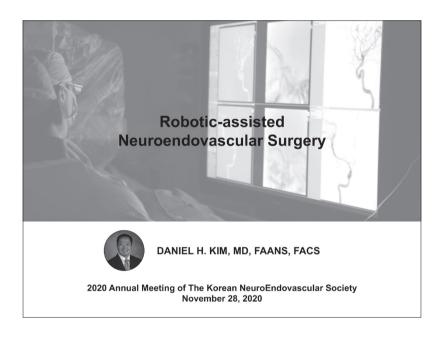
메디픽셀

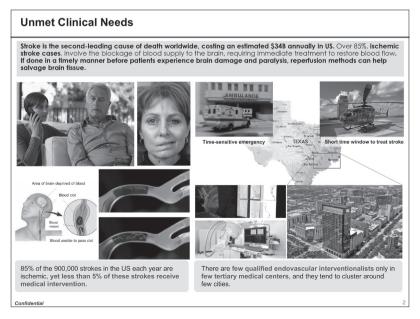
Even though minimally invasive intervention has been remarkably advanced in the filed of neuro, coronary, peripheral, etc. thanks to the development of clinical skills and medical devices, it is true that many clinicians think they still have unmet needs and there is a room for further improvement. Robotic-assisted intervention is often referred to as one of the complementary measures to the existing procedure. The advantage of robotic precision, fatigueless performance, and x-ray exposure reduction has been mentioned in many different clinical procedures not only increasing accuracy but also reducing time and error.

Medipixel has been working on R&D to support clinician's diagnosis and treatment in PCI(Percutaneous Coronary Intervention) based on artificial intelligence technology. This session will provide the technology overview of coronary angiogram-based automated lesion quantification and autonomous navigation of guidewires to the lesion area, which will act as core blocks for robotic-assisted intervention in PCI.

Magnetically Controlled microrobots for the treatment of vascular diseases

Hong Soo Choi, Ph. D.


Professor, Department of Robotics Engineering Co-Director, DGIST-ETH Microrobot Research Center Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, S. Korea


Significant progress has been made in the development of robotic systems that steer catheters. A more challenging task, however, is the development of systems that steer sub-millimeter-diameter guidewires during intravascular treatments; a novel microrobotic approach is required for steering. In this presentation, two types of magnetically actuated microrobots are introduced for precise control by external magnetic fields to achieve their specific goals. Tethered and untethered microrobots with wireless magnetic manipulation are presented for the treatment of vascular diseases such as thrombosis. The tethered microrobot is attached to the tip of the guidewire, and is magnetically steered by changing the direction and intensity of an external magnetic field. The tethered microrobot is fabricated via replica molding and features a soft body made of polydimethylsiloxane, permanent magnets, and a microspring. The microrobot was steered inside a complex 2D and 3D phantoms for in vitro steering and tracking tests. The untethered microrobot was also tested using a 3D phantom of the coronary artery to verify steerability in 3D space. The microrobots were successfully guided into any desired arterial branch in the phantoms and our system improves steerability and will find applications in robot-assisted intravascular treatments.

Robotic-assisted Neuroendovascular Surgery

Daniel H. Kim

University of Texas at Houston, USA

Tele-Robotic Technology

Major Pain Point can be solved

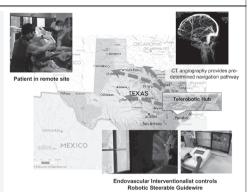
There is a short window to treat cerebral strokes before patients experience brain damage and paralysis. There are few qualified physicians, and they tend to cluster around few cities. Telerobotic procedures will allow patients to access qualified physicians.

Large potential market

1/6th of humanity will have a stroke sometime in their life. Every two seconds someone in the world suffers a stroke. Every 6 seconds someone dies from a stroke. 85% of the 900,000 strokes in the US each year are ischemic, yet less than 5% of these strokes receive medical intervention.

Emerging technology is enabling telerobotic

- solutions


 5G networks provide the reliability and bandwidth that will enable remote patient
- care.

 Endovascular robots could be considered emergency devices that should be installed at every urban center.


Computer-assisted navigation featuring shape sensing & haptic feedback allows teleroboic intervention

Confidential

- FDA is likely to provide viable regulatory pathway for telerobotic stroke applications given the lack of clinical alternatives for patients.

 The Endovascular Robot will be better positioned to
- compete in the 5G telerobotic stroke space.

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

Luncheon Seminar

좌장: 윤석만(순천향대), 권순찬(울산대)

1. 심뇌혈관질환의 국가정책방향 이건세(건국대 의학전문대학원 예방의학교실)

2. 심뇌혈관센터 중앙지원단 및 권역 심뇌혈관센터의 역할 배희준(서울대 신경과)

3. 지역심뇌혈관센터 임 준(서울시립대 도시보건대학원)

4. 심뇌혈관질환정책에 대한 대한뇌혈관내치료의학회의 제안 신승훈(차의과학대)

심뇌혈관질환의 국가정책방향

이건세

건국대 의학전문대학원 예방의학교실

심뇌혈관질환의 국가정책방향

대한뇌혈관내치료의학회

2020년 11월 28일

건국의대 예방의학교실 이건세

1기 심뇌혈관질환 종합대책 실행계획안 소개 (2006)

질병관리본부 만성병 조사팀

1. 심뇌혈관질환 국가 관리 왜 해야 하는가?

심뇌혈관질환을 국가가 왜 관리해야 하는가? 고혈압 : 약물치료는 하나 지속치료 소홀 친구의 문상중 쓰러짐 • 장애관리 및 경증의 마비 (의식은 있으니 사지미비) ? 종합병원 - 급성기치료 아너 시독시표 포글 당뇨: 비약물요법으로 완치가능하나 소홀 • 재발 방지 ? ? ↑ 이후는 어떻게 할 것인가? 그대로 뇌돌 것인가? 비만 : 제중관리 소홀 예방 가능한 고현압, 당뇨병 기현압, 당뇨, 비만이 지속치료 왜 발생했는가? 왜 하지 않았는가? 뇌졸중, 심근경색 환자의 One-stop 의료서비스기 가능한 병원 환지경과 •응급의학과 --- 주요문제 •심장내과와 흉부외과 - 해결방안

심뇌혈관질환 종합대책 추진체계도 심·혈관 질환자 1차 예방 2차 예방 3차 예방 조기 진단 및 치료관리 건강증진 응급치료 흡연 위험요인 감소 비만 고혈압 식이 적절한 치료 이상지질혈증 병원 서비스 당뇨병 신체활동

전문의료서비스 제공체계

조직	구축방안	개소 수	주요기능
중앙 심·뇌혈관 질환센터	신설	1개소	심·뇌혈관질환 임상 및 기초 연구 표준화 임상지침 개발 및 교육 의료서비스 질 지표 개발 및 평가
권역 심·뇌혈관 질환센터	광역거점 대학병원 /50병상 전담치료시설 증축	16개소	삼·뇌혈관질환 임상 및 기초연구 지역센터 임상진료 서비스지원 권역 내 표준화 임상지침 교육 및 인력 훈련
지역 심·뇌혈관 질환센터	대학병원, 종합병원/전문 의료서비스 제공 진료팀 구성	100개소	지역 내 급성기 치료 담당(팀접근) 재활치료 담당

6

1기 심뇌사업의 성과

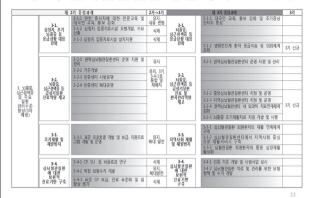
- 고혈압·당뇨 등 선행질환의 인지율, 치료율을 개선
 - 인지율 : 고혈압 24.7%('98) → 58.3%('09), 당뇨병 44.2%('98) → 72.7%('09)
 - 치료율 : 고혈압 22.0%('98) → 52.0%('09), 당뇨병 29.8%('98) → 62.0%('09)
- 지역 중심의 만성질환 관리 시범사업 모델을 수립
- 권역 심뇌혈관질환센터 등을 통해 지방의 심뇌혈관질환에 대한 의료형평성을 개선
 - 관상동맥중재술 중앙값 75분 → 63분
 - 혈전용해제투여 중앙값 51분 → 44분으로 단축

2기 심뇌혈관질환 종합대책 (2011-2015)

보건복지부 질병정책과

8

제2기 심뇌혈관질환 종합대책 중점과제

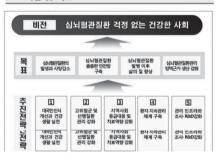

영역	중분류	소분류
	3-1. 심정지, 초기 뇌졸중 등 응급상황 대응 강화	3-1-1 관련 종사자에 대한 전문교육 및 대국민 교육, 홍보 강화
		3-1-2 심정지 집중치료시설 모형개발, 수요산출
		3-1-3. 심정지 집중치료시설 설치지원
	3-2. 뇌졸중, 심근경색증 등 급성기질환 진료역량 제고	3-2-1 권역심뇌혈관질환센터 운영 지원 및 관리
뇌졸중, 심근경색증		3-2-2 기준개발
등 주요 질환		3-2-3. 인증센터 시범운영
관리수준 향상 (3차 예방)		3-2-4. 인증센터 확대운영
, , , , ,	3-3. 조기재활 및 재발방지	3-3-1 표준 프로토콜 개발 및 보급, 지원프로그램 개발 및 운영
	3-4. 심뇌혈관질환에 대한	3-4-1 CP, SU 등 비용효과 연구
		3-4-2 적정 보험수가 개발
보편적 진료기반 -	보편적 진료기반 구축	3-4-3. 표준 CP 보급, 진료 표준화 및 질 향상 평가

제2기 심뇌혈관질환 종합대책 중점과제

영역	중분류	소분류
	4-1. 「국가심뇌혈관질환 관리 위원회」활성화	4-1-1. 위원회 구성 4-1-2. 위원회 운영
심뇌혈관질환 관리 인프라 개선	4-2. 만성질환 관련 법령과 제도의 정비	4-2-1. 법령 제정 4-2-2. 건강증진기금 확대 대비 검토
	4-3. 국가 주요 만성질환 감시체계 구축 및 운영	4-3-1. 권역센터 중심의 뇌졸중, 심근경색중 감시치계 운영 4-3-2. 주요 통계생산체계 개발 및 운영
	4-4. 심뇌혈관질환에 대한 연구개발 강화	4-4-1. 자문단 구성 4-4-2. 중장기 로드맵 작성

10

제3기 심뇌혈관질환 종합대책 중점과제



제3기 심뇌혈관질환 종합대책 중점과제

세부 사업명	3-2-4 권역심뇌혈관센터 내 외과적 치료연계체계 강화
	○ 내과적 외과적 치료 협진 체계 구축 필요
n od vijed	- 내과적 시술로 해결되지 않는. 환자 발생 시 백업기능 등을 위한 협진체계가
사업 배경	필요함
및 필요성	- 권역심뇌혈관질환센터가 중심적으로 내과·외과의 진료 협진체계를 개발하
	여 운영될 수 있도록 모형 개발을 하여 평가 해볼 필요가 있음.
	○ 권역심뇌혈관질환센터 내 내과적-외과적 치료연계체계 개발 및 타당성 연
	구
	- 심뇌혈관질환 치료에 있어 내과와 외과적 치료연계 체계를 강화 할 수 있는
사업 내용	모형 연구 수행
(구체적으로)	○ 시범사업 실시
	🗗 2개 지역 (11개 권역심뇌혈관질환센터 권역 중 2개 선정) 시범사업 실시
	○ 시범사업 평가
	 시범사업 평가 수행

제1차 심뇌혈관질환관리 종합계획 (2018~2022)

Ⅳ. 비전 및 목표

3 지역사회 응급대응 및 치료역량 강화

Ⅱ 권역 심뇌혈관질환센터 기능 정비 등 운영 활성화

① 심뇌혈관질환 관리 지원을 위한 중앙심뇌혈관질환센터 지정

- (필요성) 심뇌혈관질환 관리 정책·사업 기획 및 평가, 정책 근거 마련, 기초자료 생산 등을 총괄하는 정책 컨트롤타워 필요
 - * 현재 지정·운영 중인 (권역)심뇌혈관질환센터 사업의 효과성 제고
- (추진내용) 국가 심뇌혈관질환관리 사업의 컨트롤타워 및 기술지원을 위한 중앙심뇌혈관질환센터 기능 설정 및 지정·운영
 - * 중앙심뇌혈관질환센터의 기능·모형 등 연구('18년)
- 심뇌혈관질환 관리 정책·사업의 기술지원'과 평가, 환자 등록 ·

4 환자 지속관리 체계 구축

집 급성심근경색증·뇌졸증 환자 퇴원 후 지역 연계 관리체계 구축

- (필요성) 재가 환자의 재활과 일상복귀 등을 위해 환자와 가족, 이르지에게 체계점이 점심제공 및 이르기와 지역사히 가의 역계
- 의료진에게 **체계적인 정보제공 및 의료기관-지역사회 자원 연계** * 해외사례: 美 National Stroke association(http://www.stroke.org) 등
- (추진내용) 퇴원 후 환자·보호자를 위한 체계적인 정보제공 및 상 당서비스, 지역사회 서비스 연계 등 중합지원 체계 마련

14

③ 전문인력 수요평가 및 역량 강화

- (필요성) 현재 지역별로 심뇌혈관질환 외료접근성 및 사망률 격차가 나타나는데, 이는 상당 부분 역량 있는 전문인력 부족에 기인
- 심장질환자 응급 PCI, 심장수술, 뇌출중 급성기치료 등 담당을 위한 필수인력의 지역별 수요 및 공급을 분석, 적정수급 지원 필요

④ 심뇌혈관질환 적정 치료와 관리를 위한 지원대책 마련

- (필요성) 심뇌혈관절환자는 급성기 치료 및 회복, 재활과장에서 다학계적 진료팀의 집중 케어가 필요하므로 의료진에 대한 적정 보상 및 환자 부담 완화 검토
- (추진내용) 심뇌혈관절환 진료와 재활 등 난이도에 대한 적절한 보상과 환자부담 완화를 위한 제도개선 방안 검토
- 심뇌혈관질환 안전망 및 센터별 협력체계 구축에 따른 지원방안 (예산 또는 건강보험 수가 등 방안 검토), 심뇌혈관질환자의 의료비 부담 완화방안 등 검토

3-1	권역 심뇌혈관질환센터 기능 정비 등	질병정책과,	응급의료과
	운영 활성화	(질본) 만성질환예방과	
3-2	지역 생활권 중심 지역(일차) 심뇌혈관질환센터 지정·운영	질병정책과, (질본) 만성질환예방과	용급의료과
3-3	권역·지역(일차) 심뇌혈관질환센터 기반 조기재활서비스 제공	질병정책과, (질본) 만성질환예방과	
4-1	급성심근경색증·뇌졸중 환자 퇴원 후 지역 연계 관리체계 구축	질병정책과, (질본) 만성질환예방과	
4-2	급성기 퇴원 후 회복기와 유지기 재활서비스 제공체계 마련	질병정책과, (질본) 만성질환예방과	의료기관정책과 장애인정책과
5-1	국가통계 생산체계 구축	질병정책과, (질본) 만성질환관리과 만성질환예방과 건강영양조사과	
5-2	심뇌혈관질환 연구개발(R&D) 강화	(질본) 심혈관질환과, 뇌질환과	보건의료기술개발고 (보건산업진흥원)
5-3	전문인력 수요평가와 역량 강화	질병정책과, (질본) 만성질환예방과	의료자원정책과
5-4	성뇌혈관질환 적정 치료와 관리를 위한 지원대책 마련	질병정책과, (질본) 만성질환예방과	

16

15

권역심뇌혈관질환센터

권역심뇌혈센터 설치

'05.12 : 「공공보건의료 확충 종합대책 」수립 - 지역간 의료의 불평등해소를 위해 지방국립병원 육성 전략 제시

'06. 06 : 「심뇌혈관질환 종합대책」수립

- 심뇌혈관질환 3차 예방대책의 일환으로 심뇌혈관질환센터 육성 전략 제시

'06. 11 : 「심뇌혈관질환 정복을 위한 센터 중심의 모형관리 연구 」실시 - 심뇌혈관질환 센터 구축전략 및 기능과 요건 연구

'07. 04: 「보건의료분야 균형발전정책」 추진계획 수립

- 권역별 심뇌혈관질환센터 지정 육성을 위한 세부 계획 제시

'08. 11 : '08년도 권역심뇌혈관질환센터 지정 (강원대,경북대,제주대)

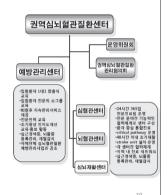
'09. 03 : '09년도 권역심뇌혈관질환센터 지정 (경상대,전남대,충북대)

'09. 10 : 병원별 CP개발 및 적용

- 심근경색증,뇌졸중 전문진료 제공의 기틀 마련

'10. 04 : '10년도 권역심뇌혈관질환센터 지정 (동아대,원광대,충남대)

'12. 12: '12년도 권역심뇌혈관질환센터 지정 (분당서울대,인하대)


18

권역심뇌혈센터 설치

- 권역심뇌혈관질환센터의 주요 기능
- 포괄적이고 전문적인 집중진료기반 구축
- 24시간 365일 전문진료팀 상주당직체계 운영
 주임상경로(CP) 개발, 지속적 모니터링
- 뇌졸중집중치료실(SU), 심혈관계중환자실(CCU) 운영
- 뇌졸중 조기재활 및 심장재활 시행

✓ 심뇌혈관질환 예방관리의 중추역할 수행 사님청관진한 이 로인 한지 점문고요기점으로

- 심뇌혈관질환 입·퇴원 환자 전문교육과정운영
- 퇴원환자 F/U(추구관리) 서비스 제공 - 전문인력에 대한 전문교육과정 운영
- 지역사회 교육·홍보(조기증상 인지도 향상 사업)

심뇌혈관질환 관리법의 주요 내용

20

심뇌혈관질환관리법

- 제2조(정의) "심뇌혈관질환"이란 심장질환, 뇌혈관질환 또는 그 선행 질환으로서 다음 각 목의 어느 하나에 해당하는 질환을 말한다.
 - 가. 심근경색 등 허혈성 심장질환
 - 나. 심장정지
 - 다. 뇌졸중 등 뇌혈관질환
 - 라. 고혈압
 - 마. 당뇨병
 - 바. 그 밖에 보건복지부령으로 정하는 질환
- 시행규칙 제2조(심뇌혈관질환의 종류)
 - 「심뇌혈관질환의 예방 및 관리에 관한 법률」(이하 "법"이라 한다) 제2조 제1호바목에서 "보건복지부렁으로 정하는 질환"이란 다음 각 호의 어느 하나에 해당하는 질환을 말한다.
 - 1. 심부전
 - 2. 부정맥
 - 3. 뇌동맥류

심뇌혈관질환관리법

- 제9조(심뇌혈관질환센터의 지정 등)
 - ① 보건복지부장관은 다음 각 호의 사업을 수행하기 위하여「의료법」제3조제2항제3호마목에 따른 종합병원을 심뇌혈관질환센터로 지정할 수 있다.
 - 1. 심뇌혈관질환 환자의 진료 및 재활
 - 2. 제4조에 따른 종합계획 관련 업무 지원
 - 3. 심뇌혈관질환 관련 예방, 진료 및 재활 등에 대한 조사·연구
 - 4. 심뇌혈관질환조사통계사업 관련 자료의 수집·분석 및 제공
 - 5. 심뇌혈관질환의 예방과 관리에 관한 홍보 및 교육
 - 6. 그 밖에 심뇌혈관질환관리에 필요한 사업으로서 보건복지부 령으로 정하는 사업

22

21

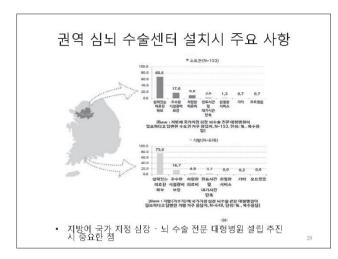
심뇌혈관질환관리법

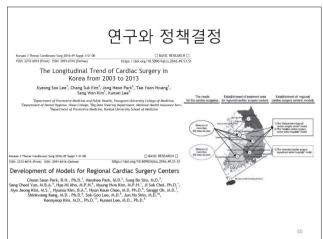
- 제4조(심뇌혈관질환관리종합계획의 수립)
 - ① 보건복지부장관은 심뇌혈관질환관리종합계획(이하 "종합계획"이라 한다)을 5년마다 수립하여야 한다.
 - ② 종합계획에는 다음 각 호의 사항이 포함되어야 한다.
 - 1. 심뇌혈관질환관리사업의 기본목표 및 방향
 - 2. 심뇌혈관질환관리사업의 추진 계획 및 추진 방법
 - 3. 심뇌혈관질환관리에 필요한 전문 의료인력의 양성에 관한 사항
 - 4. 심뇌혈관질환에 관한 통계 및 정보의 관리 방안에 관한 사항
- 부칙 제2조
 - 제2조(권역심뇌혈관질환센터에 관한 경과조치)「보건의료기본법」 제39조 및 제41조에 근거하여 보건복지부장관이 지정한 권역심뇌 혈관질환센터는 이 법에 따라 지정된 심뇌혈관질환센터로 본다.

23

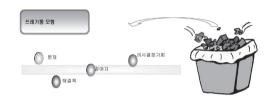
주요 쟁점 사항

- 특정 질병을 대상으로 한 법안
- 만성질환 심뇌혈관질환
- 고혈압 당뇨 관리사업 권역심뇌혈관센터
- 1차 의료 3차 의료
- 예방 치료
- 보건행정 병원
- 중앙심뇌센터 권역심뇌센터 지역심뇌센터
- Medical intervention Surgical intervention


24


심뇌혈관 수술과 정책

25



뇌실질/뇌실내출혈 자체충족율, 2004년, 2007년, 2010년, 2013년

네 가지 요소가 조직화된 혼란(무정부)상태에서 독자적으로 흘러 다니다 가 서로 다른 시간에 통속으로 들어와 우연히 한 곳에 모여지게 될 때 비로 소 정책이 결정된다.

고 하시 글스턴. 전제: 참여자의 불분명한 선호, 수시적 참여, 불명확한 분석기술 진빼기 결정(choice by flight) 과 날치기 통과(choice by oversight)

뇌혈관질환 관련 이슈

- 보험정책
 - 비급여 및 수가
 - 뇌혈관질환 내과적 접근과 외과적 접근
 - Quality, 심평원의 질평가
- 의료정책
 - _,___ 전달체계,
 - 의료자원 : 전공의 등 필수진료과
- 공공의료정책

 - 취약지, 서울 집중 등 공익적 영역, 사회안전망
- 질병정책
 - 3기 심뇌혈관질환
 - 뇌혈관질환, 재활 및 장애
 - 질병부담

심뇌혈관센터 중앙지원단 및 권역 심뇌혈관센터의 역할

배희준

심뇌혈관질환관리 중앙지원단 분당서울대학병원 신경과

2006년 제1기 심뇌혈관질환관리 종합계획이 수립이 되고 2008년 강원대, 경북대, 제주대병원에 권역심뇌혈관질환센터가 설치된 이후 15년이 지났다. 24시간 진료체계 강화와 심뇌혈관질환 치료의 지역격차의 완화를 주된 목표로 시작된 심뇌혈관센터의 설치는 3개에서 14개로 늘었고, 2017년에는 심뇌혈관질환 예방 및 관리에 관한 법률이 제정되었다. 그러나 아직 국가차원의 심뇌혈관질환 관리 체계가 구축되었다고 이야기하기에는 부족함이 많다. 올해 심뇌혈관질환관리 중앙지원단이 발족하게 된 것은 이런 측면에서 시사하는 점이 있다.

권역센터의 설치가 지역격차의 완화와 국가전체의 질향상을 이끌어 낸 것은 사실이나, 낮은 심근경색/뇌졸중 증상 인지율 및 119이용율, 응급체계와 심뇌혈관관리체계의 연계나 급성기 재활와 급성기 이후 지역사회 재활과의 연계 부족, 보건소 및 의원 기반의 일차의료체계와의 유리, 국가단위 통계 결여 등 여전히 해결해야 하는 문제점은 산적되어 있다. 중앙지원 단의 발족인 이러한 현재 심뇌혈관질환 관리사업의 한계를 극복하기 위한 좋은 출발점이라고 여겨진다.

본 발표에서는 심뇌혈관질환관리 중앙지원단의 조직과 역할, 현재의 사업 방향을 기술하고 공공의료발전계획의 한축으로 준비되고 있는 권역책임의료기관 및 권역심뇌센터의 역할에 대해 논하고자 한다.

지역심뇌혈관센터

임 준

서울시립대 도시보건대학원

지역심뇌혈관질환센터 지정, 운영 및 육성방안

2020. 11

서울시립대학교 국립중앙의료원 공공보건의료지원센터

> 1

목차


- 1. 목적 및 필요성
- 2. 연구 절차
- 3. 중증 및 일반 심뇌혈관질환센터 기능 및 역할
- 4. 심뇌혈관센터 최적배치 분석 및 필요도 분석
- 5. 심뇌혈관질환센터 지정 방안
- 6. 심뇌혈관질환센터 육성 및 지원 방안
- 7. 기대 효과

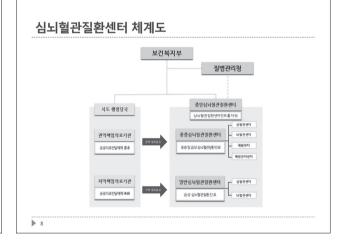
>

연구목적 및 필요성

- ▶ 제1차 심뇌혈관질환관리종합계획('18~'22), 심뇌혈관질환 안전망 구축을 위해 핵심 추진과제로 지역단위 심뇌혈관질환센터 구축을 제시
- 현재 14개 권역단위 심뇌혈관질환센터를 운영 중이나 환자 수, 골든타임 (2~3시간) 등을 고려할 때 심뇌혈관질환 대응에 한계
- 이에 지역 단위 심뇌혈관질환 지정, 운영 및 육성 방안을 마련하여 기존 권역 심뇌혈관질환센터와 협력체계 구축, 지역사회 심뇌혈관질환 예방관리 등 전국 단위 심뇌혈관질환 안전망을 구축할 필요
- 특히, 공공보건의료 발전 종합대책(18.10월) 및 지역의료 강화대책(19.11월)에 따라 추진 중인 지역책임의료기관 지정 및 육성 정책과도 유기적 연계 방안을 강구할 필요

▶ 3

연구진행 추진경과


- ▶ (19.11.11) 착수보고회
- ▶ (1g.12~20.1) 전문가 자문회의 시행
- ▶ (20.1~20.5) 전문가 대상 설문조사 시행 (대한심혈관중재학회, 대한뇌졸중학회 협조)
- ▶ (20.5.19) 심뇌중앙지원단 협의회의
- ▶ (20.5.22) 중간보고회
- ▶ (20.5.28) 전문가 워크숍 개최(권역심뇌센터장, 심뇌중앙지원단 등 관련 임상의)
- ▶ (20.6.10) 심뇌혈관질환센터 수가관련 자문회의(복지부 보험급여과)
- (20.6.10) 전문가 자문회의 시행(대한심장호흡재활의학회,대한뇌혈관내치료의학회)
- (20.6.19) 수가 체계개선 회의 시행(복지부보험급여과보건의료정책과,심평원)
- ▶ (20.07.02) 연구 최종보고회

전문가 대상 의견수렴(설문조사) 시행

- ▶ 전문가 의견조사 (설문조사) 시행
- 대상 : 대한심혈관중재학회 인증병원(전문의) 97명, 정책·기획위원회 대한뇌졸중학회 인증병원(전문의) **56개소**, 정책·기획위원회
- 방법 : 보건복지부 질병정책과 공문 협조 후, 각 **학회 직접 시행**
- 경과
- · (1차) 대한심혈관중재학회 시행(3.9), 대한뇌졸중학회 시행(3.10)
- · (2차) 대한심혈관중재학회 시행(3.23), 대한뇌졸중학회 시행(이메일 6회, 유선 상시 등)
- · (3차) 권역심뇌혈관질환센터 대상 보건복지부 공문 시행(420)
- 회신 : 심혈관 17개, 뇌혈관 29개

> 7

연구방향성 (전문가의견조사 응답 결과)

- ▶ (필요성) 지역심뇌혈관질환센터 필요(88.3%)
- ▶ (분류)하나의 국가 지정센터, 진료역량 및 접근성으로 분류

	분류	비고	적절	부적절
[가경	B] 국가인중심뇌혈관질환센터	진료역량 및 접근성에따른 분류	76.5%	8.8%
	[가칭] 중증심뇌혈관질환센터	-권역 내 1개 수준	79.4%	8.8%
LEVEL	[가칭] 일반심뇌혈관질환센터	-지역(진료권) 내 1개 수준	76.5%	8.8%
	[가칭] 농어촌거점센터	-일반센터까지의 거리가 먼 경우	55.9%	23.5%

▶ (분리운영) 공급충족지역의 분리운영, 이외지역은 함께 운영

	동의	동의하지 않음	
수요보다 공급이 많은 지역	공급충족을 감안하여 심/뇌혈관질환센터를 나누어 운영한다.	76.5%	20.6%
이 외 지역 (취약지 포함)	인력의 분산문제를 감안하여 심뇌혈관질환센터를 함께 운영한다.	82.4%	11.8%

▶ 9

의료 수요, 공급 현황 분석

▶ 심혈관질환(l21)의 경우, 환자 수요에 대해 종합병원급 이상, 지역응급의료센터 이상 135개소에서 의료서비스 제공 (′18)

정의	KCD 주,	KCD 주, 1부진단		KCD 주, 부진단		PCI	CABG	
8의	청구건수	실환자수	청구건수	실환자수	CAG	rci	CABG	
종합병원급 이상 & 지역응급의료센터 이상(부재진료권 : 19개)								
의료수요	427,719	117,792	506,323	143,027	104,579	61,671	1,983	
공급 개소 수	135	135	135	135	135	134	78	

공급성 개요~ 용급성을 경우해 의원한 내원환자 중 KCD 주인 : ID를 주진만 되는 제1부진단으로 갖는 현자 KCD 주, 보인 : ID를 주진만 되는 제1부진단으로 갖는 환자 KCD 주, 보인 : ID를 주진만 되는 제1부진단 - 세부진단으로 갖는 환자 CAG A(을 : 수가급드 1460, 14680~2~를 갖는 환자 PCI 서울 : 수가급도 MSS1-2, MSS1-4, MSS71-2, MS633~를 갖는 환자 기급 C O1641~2, O1647, OA641~2, OA647 를 갖는 환자

의료 수요, 공급 현황 분석

▶ 뇌혈관질환(I6o-64)의 경우, 환자 수요에 대해 종합병원급 이상, 지역응급의료센터 이상 130개소에서 의료서비스 제공 (′18)

정의	KCD 주,	ュ부진단	KCD 주,	IV/IA				
정의	청구건수	실환자수	청구건수	실환자수	IV/IA			
종합병원급 이상 & 지역응급의료센터 이상(부재진료권: 22개)								
의료수요	2,108,213	497,439	2,501,871	591,275	17,247			
공급 개소 수	130	130	130	130	130			

* 용급실을 경우에 입원한 내원환자 등, KCD 구입인 :160-164을 구입인 없는 제,14진단으로 깃는 환자 KCD 구입인 :160-164을 구입인 없는 제,14진단으로 가수 환자 (T) (경역 대원하여의 - 가구로 - 지하시대) - 제,44원 진단으로 깃는 환자 (T) (경역 대원하여의 - 가구로 - N6630-3, M6635-7, M6639 을 갖는 환자 LT (등역 내 원전용체을) : 수가코드 M6630-3, M6635-7, M6639 을 갖는 환자

▶ 11

중증/일반 기능 구분[역할 구분] (본 연구 결과)

▶ 중증·일반 심뇌혈관질환센터 역할 분류 (안)

	*10	MOLLI INSTITUTUTI	정부지	정센터	
	항목	중앙심뇌혈관질환센터	일반심뇌혈관질환센터	중증심뇌혈관질환센터	
진료기능	-심뇌혈관질환 진료수행	컨트롤타워	의무	의무	
임상적 리더쉽	·CP(임상진료지침) 개발	지원	의무	참여 (적용)	
교육	·전문인력 대상 필수의료 임상 교육 ·지역보건의료기관과의료인력교류네트워크구축	계획 수립, 모니터링	의무 (직접수행)	참여	
연구	-기초연구 / 정책연구 / 임상연구	기획, 수행	수행	일부 수행 (임상연구)	
기획·정책	·기획, 평가 실시 ·조사통계사업 및 레지스트리 운영	종합계획수립, 레지스트리 기획	참여	참여	
평가	·평가 및 모니터링	평가	참여	참여	

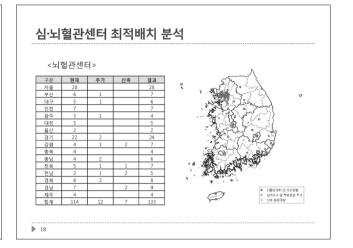
심뇌혈관질환센터의 기능 및 역할 (종합) (본 연구 결과)

	분류	중앙심뇌혈관질환센터	중증심뇌혈관질환센터	일반심뇌혈관질환센터
,	디정권사	보건부지부정관	보건하지막장면	시도자사
- 2	디정주기	9년	5년	5년
,	dadis	성급함함병원또는 300명성조과용합명원	중합병원이상 지역응급의료센터 이상	중합병원급이상해암의로기관전문병원 포함 지역용급의료선티아생태암의료기관전문병원은 미작원
주 요	전로	· 중중·시역심뇌혈관질환센터 간트를 타워	응한 필요한 회사(현대원 현실 (설명) 24시가 (한대명 verelwise(대원) 최지 - 변환용제 보지(인원) PCT 2020년 원선(소화) 전 50건 이번 (대원) 24시(24시(50년 5년 5년 5년 6년 필요수송(설원제공 노네원제제공 중) 가능 - 변화되지 중 연한 원지 소년(대원 변화되지 중 연한 원지 소년(대원 변화되지 중 연한 원지 소년(대원 - 변화되지 영화 인원	급성 성의용권을 전도 (대통한 구보는 기계 대통한 구보는 기계 대통한 유민이 기계 대통한 기
명함	임상적 리더십	· CP 개발 및 적용 지원	- CP(임상진료지칭) 개발 - CP 적용 및 관리	CP 적용 및 관리
	28年	· 심뇌열관절환센터 교육 계약수립및모니터링	전문인력 대상 필수의료 임상 교육 수행 지역사회 신뇌혈관질환 홍보, 캠페인 및 교육	- 필수의료 임상 교육 참여
	97	· 연구조사 기회 · 정백연구 수행	· 기초 연구 수행 임상 연구 수행	- 임상 연구 수행
	기약 정책	· 심뇌혈관관리 중합계획 수립 및 지원 · 레지스트리, D8 구축 사업 기획 및 수행	· 심뇌열관질환관리 중합계획 수립에 따른 시행기획, 자체평가 · 레지스트리, DB 구축 사업 점여	· 심뇌혈관권한관리 종합계획 수립에 따른 시행기획, 지체평기 · 레지스트리, DB 구축 사업 참여
	301	· 심뇌혈관질환센터 지정, 평가		

▶ 13

심뇌혈관센터 최적배치 분석 및 필요도 분석

심·뇌혈관센터 최적배치 분석


(1) 분석 개요

- ▶ 필수보건의료의 보장을 위해 의료자원의 현황 등 지역의 특성을 파악하고, 필수의료 기능 및 자원이 적재적소에 지원될 수 있는 기준 마련이 필요함
- ▶ 심혈관센터와 뇌혈관센터는 각 분야별로 의료자원의 양, 필요 공급 및 수요량 등 다양한 특수성을 내재하고 있기 때문에 분야별·지역별 특성에 맞는 센터 개소 수 파악이 필요함
- ▶ 이에 본 연구에서는 심·뇌혈관센터 적정 개소 수 분석을 위해 선행연구 분석 결과에서 제시 하는 최소 개소 수를 파악하고, 최적배치(안)을 마련함 * 김윤 등,「건강보험 의료이용지도(KNHI-Atlas) 구축」, 2018

15

심·뇌혈관센터 최적배치 분석 (2) 분석 방법 지역심뇌혈관센터 급 운영기관 수 조건 별 최소 개소 수 . 1단계 : 현황파악 및 최소필요 개소 수 분석 YES BB 실적우수병원 추가배치 YES 書計 NO 후보병원 추가 YES HE NO 4단계 : 센터 신축
- 진료권 내 의료자원이 없어 적정 수 도달 불가
- 가장 가까운 심뇌센터까지 60분 이상 소요 지역 신축 배치완료 ▶ 16

진료권별 심혈관·뇌혈관 센터 필요도 분석

(1) 분석방법

- 진료권 별 인구수 및 심·뇌혈관 사망비 자료를 활용하여 심·뇌혈관센터의 필요 우선순위 분석을 실시함
- 인구수는 평균을 기준으로, 사망비는 평균 1을 기준으로 표준편차의 차이로 계급 구분을 함

7.0		심·뇌혈관 사망비						
구분		매우열악	열악	보통	우수			
0.74	많음	2순위	4순위	6순위	8순위			
인구수	적음	1순위	3순위	5순위	7순위			

19

▶ 21

진료권별 심혈관·뇌혈관 센터 필요도 분석

(2) 분석결과

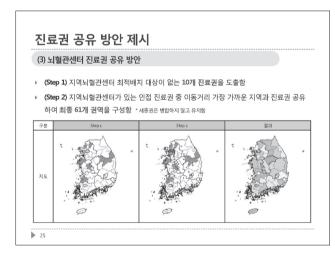
- ① 심혈관 센터 필요 우선순위 분석
- 70개 중진료권을 대상으로 심혈관 센터 필요 우선순위 분석을 실시함
- ▶ 총 8개 진료권이 심혈관 센터 필요 1순위로 도출됨

필요도	개소수
1순위	8
2순위	1
3순위	20
4순위	13
5순위	15
6순위	10
7순위	0
8순위	3

진료권별 심혈관·뇌혈관 센터 필요도 분석

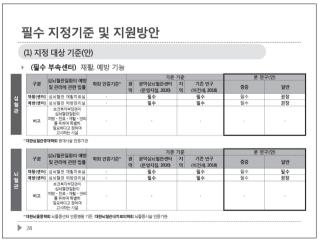
- ② 뇌혈관 센터 필요 우선순위 분석
- 70개 중진료권을 대상으로 뇌혈관 센터 필요 우선순위 분석을 실시함
- 총 16개 진료권이 뇌혈관 센터 필요 1순위로 도출됨

필요도	개소수
1순위	16
2순위	2
3순위	21
4순위	8
5순위	6
6순위	17
7순위	0
8순위	0


□ 40⁴ 8순위 0

진료권 공유 방안 제시

(1) 분석 개요


- 현재 지역심뇌혈관질환센터 급 역량을 갖춘 의료자원이 특정 지역에 편중되어 있어, 70개 중진료권 단위는 현재 지역심뇌혈관 의료체계를 적절히 커버할 수 없는 실정임
- 규모와 대상을 고려한 진료권 공유 방법을 도출하고, 향후 심뇌혈관 의료
 관련 정책에 표준적인 진료권 공유 방안의 제시가 필요함
- 추후 지역심뇌혈관질환센터 지정기준 마련, 운영 및 연계 방법, 예산(안)
 추계 등의 다양한 분야에 유용한 기초자료로 활용할 수 있음

필수 지정기준 및 지원방안

(1) 지정 대상 기준(안)

(필수 인력기준 산출 근거)_당직충족율 제안

	열관		되열판			
구분	권역심뇌혈관센터	상주 당직*	상주 당직(안)			
	(운영지침, 2020)	- 1 - 1	중증	일반		
평일	50%	60%	100%	50%		
주말 및 공휴일	100%	85%	100%	70%		
총 당직 충족률	-	70%	100%	58%		

* 다지추조류 · 다지시가/다지피ㅇ시가 = (상주당직 운영시간/당직필요시간) = 총 당직시간 (24-진료시간)×당직일수 ×100

시간	%	화	宁	목	금	주말	공휴일	시간	2	화	中	목	금	주말	공휴일
00:00~06:00	상주당직	상주당직	상주당적	상주당직	상주당적			00:00~06:00	대기당직 (on call)	대기당직 (on call)	대기당직 (pn call)	대기당직 (on call)	대기당직 (bncall)	대기당직 (on call)	대기당직 (pn call)
06:00~09:00								06:00~09:00	상주당직	상주당직	상주당직	상주당직	상주당직		
09:00~18:00	진료	진료	진료	진료	진료	상주당직	상주당직	09:00~18:00	진료	진료	진료	진료	진료	상주당직	상주당독
18:00~22:30								18:00~22:30	상주당직	상주당직	상주당직	상주당직	상주당직		
22:30~00:00	상주당직	상주당직	상주당직	상주당직	상주당직			22:30~00:00	대기당직	대기당직 (on call)	대기당직	대기당직	대기당직	대기당직 (on call	대기당적 foncal

29

필수 지정기준 및 지원방안

(1) 지정 대상 기준(안)

(필수 인력기준 산출 근거)_당직충족율(안) 적용

	7.4	권역심뇌혈관센터	당직충족	[율(안)
심혈관	イモ	(운영지침, 2020)	중증	일반
	평일	50%	100%	50%
니혀과	주말 및 공휴일	100%	100%	70%
시 글 건	총 당직 충족를	-	100%	58%

* 대안) 고용노동법에 의거 '전문의 업무시간 기준'을 근로자 기준 주52시간제 적용

(전제) 진료시간 월-금(9a.m~6p.m), 총 당직 필요시간은 **123시간**

당직충족율 적용 시 (중증) 필수당직 123시간, (일반) 필수당직 75시간

- → 반영안) 주 52시간제를 총 업무시간으로 가정
 - · 다빈도 시간(혹은 주간시간, 06:00~22:30)과 그외 시간으로 구분, <u>주간 24시간, 주간외 28시간 근무</u>
- 전문의 기준 주간의 업무 28시간 적용시
 (중증)의 경우, 주간의 업무시간을 전문의 상주 체제로 운영하기 위해 최소 5인 필요
- (일반)의 경우, 주간외 업무시간을 전문의 상주 체제로 운영하기 위해 최소 3인 필요

* 다빈도 시간(혹은 주간시간): 주 진료시간 09:00~18:00 기준으로 까지를 다빈도시간으로 정의

▶ 30

필수 지정기준 및 지원방안 (1) 지정 대상 기준(안) › (필수 인력기준) 심뇌혈관질환의 예방 및 관리에 관한 법률 학회 인증기준* 권 권역심뇌혈관센터 지 역 (운영지침, 2020) 역 기존 연구 (이건세, 2018) 순환기 전달 전문의 수 내과 중재시술인증의 흥부 전달 전문의 수 개흥 및 CABG 가능 전문의 3명 이상 2명 이상 1명 이상 2명 이상 3명이상 2명 이상 2명 이상 전담 방사선사 또는 임상병리사 2명 이상 담방사선사 또는 전담방사선사 또는 당병리사 2명 이상 임상병리사 1명 이 학회인증기준* 권 권역심뇌혈관센터 지 역 (운영지칭, 2020) 역 구분 기존 연구 (이건세, 2018) 전문의 수 선명의 수 선명의 수 선명의 전문의 수 선명의 선명의 수 선명을 전로 선명을 전로의 선명을 전문의 설명을 전용되었다. 설명을 전용되었다. 설명을 전용되었다. 3명 이상 *개인당 월 5건 대 시술 건수 1명 이상 * 너른중수술가능? 3명 이상 개두날 기능 신영되며 전문의 1명 이상 (뇌렬관내치료의학회) 네출중수술가능 이상 포함 권조 1명 이상 1명 이상 1명 이상 4명상당 최소5

필수 지정기준 및 지원방안 (1) 지정 대상 기준(안) 기설 장비 구분 정선 스 설립은 환전성 정보 등 경역 조명 및 전문 경사실/ 경보 등 경역 지난 경기 등 기업 및 명시 기업 및 (필수 시설장비 기준) 심뇌혈관질환의 예방 및 관리에 관한 법률 학회 인증기준* 권 권역심뇌혈관센터 지 및 관리에 관한 법률 강 1십 이성 권장 제세통기 경피적 심매순한 보조장치 심장생통 외과적 기기 환자감시장치 심장초용파 심전도 24시간 심전도(Hother 권장 -1대 이상(전용 1대 이상(전용 1대 이상(전용 2대 이상(전용 System) 24시간 혈압측정기 운동부하검사

필수 지정기준 및 지원방안 (1) 지정 대상 기준(안) (필수 시설장비 기준) 심뇌혈관질환의 예방 학회 인증기준 권 권역심뇌혈관센터 지 기존 연구 및 관리에 관한 법률 학회 인증기준 연 (운영지침 2020) 역 (이건세 2018 구분 병상수 필수 4병상 이상 4병상 이상 5병상 이상 4병상 이상 뇌졸중집중치료격리병상 뇌물왕십명시-뇌혈관 조영실 검사 및 수출 1실 이상 1실 이상 1실 이상 1실 이상 1실 이성 뇌험관조영기 1대 이상 1대 이상(전용) 1대 이상(겸용 '용급실 간호스테이션에서 '용급실 간호스테이 20m대 또는 1분 이내 위치한 서 20m대 또는 1분 용공성 간호스테이 계서 20m대 또는 14 이내 위치한 CF수 *용급실 건호스테이 서 20m대 또는1분 * 의치현 MR수 뇌혈류 초음파 (Transcranial doppler) 경동맥 초음파 (Carolid den) 1대 이상 1대 이상 1대 이상 1대 이상 1대 이상(겸용) ***대한뇌플중학회** 뇌즐중센터 인증병원 기준 **대한뇌혈관내치료의학회** 뇌졸중시술 인증기관 33

필수 지정기준 및 지원방안

(2) 지정근거

- ▶ **(지정근거 법률)** 심뇌혈관질환의 예방 및 관리에 관한 법률 → *개정 필요*
- (법률개정 필요사항)
 - 1) 심뇌혈관질환센터를 권역/지역 혹은 <u>중증/일반</u>심뇌혈관센터로 **구분**
 - → 현행 법률에는 권역심뇌혈관센터와 지역심뇌혈관센터 구분이 없음

'심뇌혈관질환의 예방 및 관리에 관한 법률' 부칙 제2조(권역심뇌혈관질황센터에 관한 경과조치) 「보건의료기본법」제39조 및 제41조에 근거하여 보건복지부장 관이 지정한 권역심뇌혈관질황센터는 이 법에 따라 지정된 심뇌혈관질황센터로 본다.

- 2) 심뇌혈관질환센터를 <u>심혈관센터</u>와 <u>뇌혈관센터</u>로 구분하여 지정기준 제시
- → 현행 법률(시행규칙)에는 심혈관, 뇌혈관센터가 구분되어 있지 않으며, **심뇌혈관질환센터** (심혈관+뇌혈관센터)를 전제로 시설, 인력기준 제시

필수 지정기준 및 지원방안

(3) 지정즈체

- (현행) 심뇌혈관센터: 보건복지부장관 지정 (심뇌혈관질환의 예방 및관리에 관한 법률시행규칙 제6조)
- → (제안) 중증 : 보건복지부장관 지정 / 일반 : 시도지사
 - 지역의료체계에서의 지자체의 권한 및 역할 강화
 - * 응급, 외상 등 권역 및 지역 구분 사업의 경우 지역센터는 시도지사 지정

<지정사례 비교>

35

구분		구분 지정 법률		비고
상급종합병	등합병원 의료법		보건복지부장관	-
치매안심병	9원	치매관리법	보건복지부장관	시도 경유
공공전문전	료센터	공공보건의료에 관한 법률	보건복지부장관	시도 경유
호스피스전문기관		느피스전문기관 연명의료결정법		-
의료취약지 거점의료기관		공공보건의료에 관한 법률	시도지사	-
	권역용급의료센터		보건복지부장관	-
응급	지역응급의료센터	응급의료에 관한 법률	시도지사	-
01.0	권역외상센터	0.70174174174	보건복지부장관	-
외상	지역외상센터 응급의료에 관한 법률		시도지사	-
심뇌혈관	권역심뇌혈관센터	심뇌혈관질환의 예방 및 관리에 관한 법률	보건복지부장관	

필수 지정기준 및 지원방안

(4) 지원방식

- (현행) 권역심뇌혈관센터 : 국비 70%, 병원 30%
- ▶ (제안) 중증 : 현행 유지(국비 70% : 병원 30%) / 일반 : 지방자치단체 보조사업(국비 50% 지방비 50%)
- 지방비 매칭을 통해 **지자체 책임 강화**, 권역 대비 규모가 작은 지역심뇌혈관센터 **병원의 부담 완화**

구분	사업명	보조비율(국비:지방비)	비고
	전문질환센터 설치사업	국비 100%	-
	고위혐 산모신생아 통합치료센터	국비 100%	
	권역심뇌혈관질환센터 설치사업	70 : 30(병원부담)	
권역	권역외상센터 설치사업	60 : 40(병원부담)	
(대학병원급)	지역암센터 설치사업	50 : 20 : 30(병원부담)	
	어린이병원 설치사업	50:50(지방비+병원부담)	
	권역재활병원 건립사업	50 : 50	
	공공 어린이 재활병원 건립사업	50 : 50	
	지역거점공공병원 지원사업	50 : 50	
지역	공립요양병원 기능보강사업	50:50	
	분만 및 의료취약지 지원사업	50:50	

34

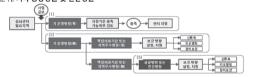
필수 지정기준 및 지원방안

(5) 지정관리

- (지정주기) 5년 주기 재지정
 - 시설·장비 감가상각 기간 등 고려 **권역심뇌혈관질환센터 지정주기와 동일** 5년 주기 적용

<지정주기 사례>

구분	지정주기	비고
권역심뇌혈관질환센터	5년	-
상급종합병원	3년	-
응급의료기관	3년	응급의료기관 평가(매년)
공공전문진료센터	3년	공공보건의료사업 시행결과 평가(매년)
치매안심병원	없음	
의료취약지 거점의료기관	없음	공공보건의료사업 시행결과 평가(2년 주기)

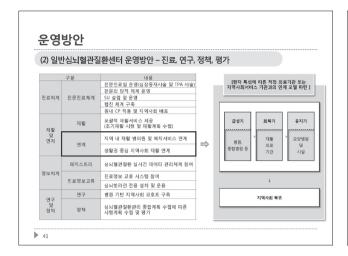

▶ 37

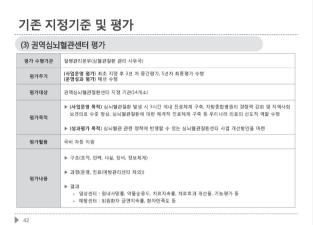
필수 지정기준 및 지원방안

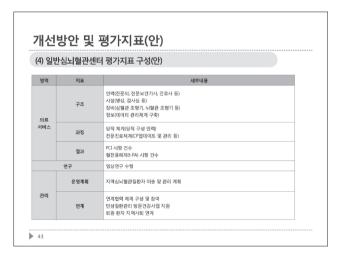
(6) 지정우선순위 및 지원 범위(안)

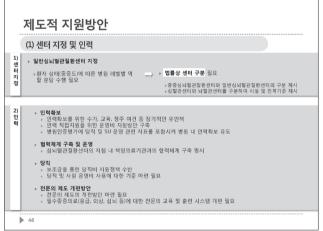
- ▶ 신뇌혈관센터 필요지역
 - ① 순위) 진료권 내 심뇌혈관센터 **기운영병원***
 - * 예시) 기운영병원: 종합병원급 및 지역응급의료센터 이상, 연간 PCI 150건 이상, 연간 혈전용해제(EPA) 투여 30건 이상 실적을 갖춘 기관
 - ② 순위) 책임의료기관 또는 지역우수병원 *
 - * 지역우수병원 : 포괄적인 의료 서비스를 충실히 제공할 수 있는 지역 중소병원

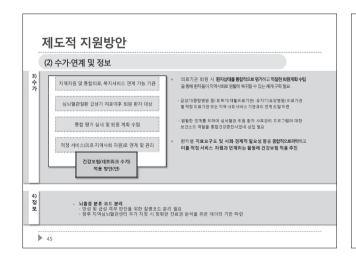
③ 순위) 기타 공공병원 및 민간병원

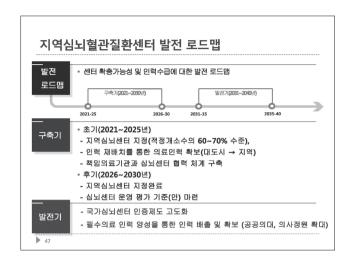


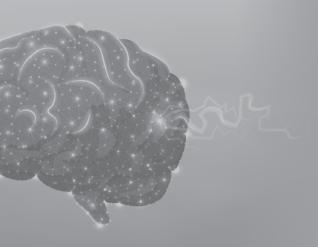

기운영병원이 없을 경우, 기운영병원과의 형평성을 고려하여
 책임의료기관 및 지방의료원 등에 대한 기능보강사업 예산 활용


▶ 38


심뇌혈관질환센터 운영 및 육성방안


운영방안 (1) 일반심뇌혈관질환센터 운영방안 – 인력 순환기내과(심장내과) 전문의 중재시술 인증의 포함 (권장) 흉부외과 전문의 [일반심뇌혈관질환센터 조직도(안)] 개흥 및 CABG 가능 전문의 포함 심혈관중재실 간호사 및 방사선사 또는 임상병리사 뇌졸중 진료 전문의 (신경과 또는 신경외과 전문의) 뇌졸중 수술가능전문의 뇌혈관 뇌혈관조영실 간호사 및 방사선사 SU 간호사 및 보조인력 심혈관센터 뇌혈관센터 사무국 위원회 운영위원회, 일반심뇌혈관질환관리협의회 운영 및 중중심뇌혈관질환관리협의회 참여 \Rightarrow 40





기대효과 및 활용방안 → 심뇌혈관질환 분야 지역별 의료격차 파악을 통해 심뇌혈관질환 대응 정책 마련에 활용 → 지역심뇌혈관질환센터 지정(또는 인증)·육성을 통해 지역간 의료격차 해소, 전국단위 심뇌혈관질환 안전망 구축 → 지역책임의료기관 지정 및 육성 방안과의 유기적 연계체계 구축을통해 심뇌혈관질환 등 필수의료보장 정책의 효과성 제고

심뇌혈관질환정책에 대한 대한뇌혈관내치료의학회의 제안

신승훈
차의과학대

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

Scientific Seminar(Presentation by KoNES awardee and Panel Discussion) **좌장:** 김범태(순천향대). 김대원(원광대)

1. 명지성모병원 남천 학술상

Comparison of stent-assisted and no-stent coil embolization for safety and effectiveness in the treatment of ruptured intracranial aneurysms 윤원기(고려대학교 구로병원)

Panel: 허준(명지성모병원)

2. 에스포항병원 학술상 (JCEN부문)

Long-term Prognosis of Patients Who Contraindicated for Intravenous Thrombolysis in Acute Ischemic Stroke 오재상(순천향대학교 천안병원)

Panel: 허원(한일병원)

3. 에스포항병원 학술상 (SCI부문)

Mechanical thrombectomy in basilar artery occlusion: clinical outcomes related to posterior circulation collateral score 박정수(전북대학교병원)

Panel: 홍대영(에스포항병원)

4. 연세에스병원 학술상

Advantages of Coil Embolization Performed Immediately after Diagnostic Cerebral Digital Subtraction Angiography in Unruptured Intracranial Aneurysms: Patients' Perspective 김종훈(영남대학교병원)

Panel: 정진영(연세에스병원)

명지성모병원 남천 학술상

Comparison of stent-assisted and no-stent coil embolization for safety and effectiveness in the treatment of ruptured intracranial aneurysms

Wonki Yoon, Haewon Roh

Department of Neurosurgery, Guro Hospital, Korea University College of Medicine

Objective: The safety of the stent-assisted coil embolization (SAC) technique for acutely ruptured aneurysms has not been established yet. SAC is believed to be associated with a high risk of thromboembolic and hemorrhagic complications in acute subarachnoid hemorrhage (SAH). The aim of this study was to evaluate the safety and efficacy of the SAC technique in the setting of acutely ruptured aneurysm.

Methods: A total of 102 patients who received endovascular treatment for acute SAH between January 2011 and De- cember 2017 were enrolled. The SAC technique was performed in 38 of these patients, whereas the no-stent coil embo- lization (NSC) technique was performed in 64. The safety and efficacy of the SAC technique in acute SAH was evaluated as compared with the NSC technique by retrospective analysis of radiological and clinical outcomes.

Results: There were no significant differences in clinical or angiographic outcomes between the SAC and NSC techniques in patients with acute SAH. The rate of ventriculostomy-related hemorrhagic complications was higher in the SAC group than that in the NSC group (63.6% vs 12.5%; OR 12.25, 95% CI 1.78–83.94, p = 0.01). However, all these compli- cations were asymptomatic and so small that they were only able to be diagnosed with imaging.

Conclusions: Ruptured wide-necked aneurysms could be effectively and safely treated with the SAC technique, which showed clinical and angiographic outcomes similar to those of the NSC technique. Hence, the SAC technique with dual-antiplatelet drugs may be a viable option even in acute SAH.

Key words: aneurysm, antiplatelets, coil, stent, subarachnoid hemorrhage, vascular disorders

에스포항병원 학술상 (JCEN부문)

Long-term Prognosis of Patients Who Contraindicated for Intravenous Thrombolysis in Acute Ischemic Stroke

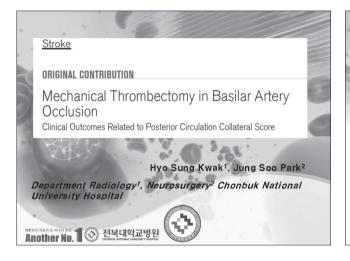
오재상

순천향대학교 천안병원

Background: As intravenous thrombolysis (IVT) has very restricted inclusion criteria, eligible patients of IVT constitute a very small proportion and studies about their mortality are rare. The long-term mortality in a patients with contraindication of ineligible patients of IVT still under the debate. So, we investigated the proportion of patients with contraindication of IVT and the short and long-term mortality of them in AIS on emergency department comparing with the long-term effect of IVT in patients with moderate-to-severe stroke.

Methods: Using acute stroke assessment indication registry & Health Insurance Review and Assessment Service database, a total of 5,407 patients with NIHSS≥5 were selected from a total of 169 acute stroke care hospital nationwide during October-December 2011 and March-June 2013. We divided AIS patients into two groups: 1) IVT group who received IVT within 4.5 hours, and 2) non-IVT group who did not receive the IVT because of contraindications. And we divided the subgroups according to the reason of contraindication of IVT. The 5-year survival rate of each group was assessed using Kaplan-Meyer survival analysis.

Results: Of the 5,407 patients, a total of 1,027 (19%) patients who received IVT using r-tPA within 4.5 h after onset. Compared with the IVT group, hazard ratios of non-IVT group were 1.33 at 3 months, 1.53 at 1 year and 1.47 at 5 years (p<.001). A total of 4,380 patients did not receive IVT because of the following contraindications to IVT. 1) Time restriction: 3,378 (77.1 %) patients were admitted after 4.5 h following stroke onset, and 144 (3.3%) patients failed to determine the stroke onset time. 2) Mild symptoms:137 (3.1%) patients had rapid improvement or mild stroke on emergency room, 3) Bleeding diathesis or non-adjustable hypertension: 53 (1.2%) patients showed a bleeding tendency or severe hypertension. Compared with the IVT group, the subgroups of non-IVT group showed consistently high mortality during short and long term follow up. Mild symptom and bleeding diathesis or non-adjustable hypertension subgroup in the non-IVT group consistently showed the higher mortality than time restriction subgroup during the short and long-term follow-up (log-rank p<.001). Patients who had rapid improvement or mild stroke on emergency department had the higher mortality than time restriction group in short and long term follow up.

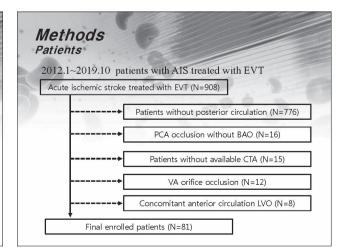

Conclusion: The AIS patients with rapid improvement or mild stroke on emergency room had higher mortality than ineligible patients of IVT due to time restriction during the short and long-term follow-up. A further management and special support on emergency department is needed for these patients with initially mild stroke and rapid improvement in AIS to reduce the poor outcome.

에스포항병원 학술상 (SCI부문)

Mechanical thrombectomy in basilar artery occlusion: clinical outcomes related to posterior circulation collateral score

박정수

전북대학교병원

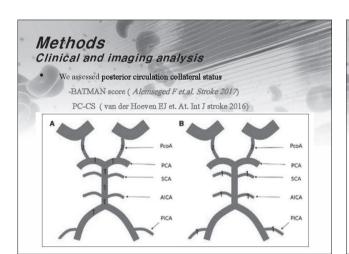


Introduction

- Basilar artery occlusion (BAO) accounts for about 1% of all stroke and, despite successful recanalization, is strongly associated with a high mortality rate and a high risk of disability.
- AHA/ASA guidelines "there is uncertainty about the benefit of thrombectomy in BAO, which may be reasonable in carefully selected patients with posterior circulation stroke when initiated within the first 6 hours of stroke onset" (Class IIb; Level of Evidence C).
 Powers WI et al. Stroke 2015:46

Introduction

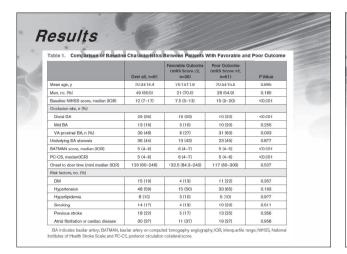
 This study aimed to investigate prognostic factors in patients with acute BAO treated with mechanical thrombectomy, focusing on collateral status and recanalization time from stroke onset.


Aspiration thrombectomy or stent retrieval

Methods Imaging acquisition & endovascular treatment Standard NCCT and CTA

Methods

Clinical and imaging analysis


- retrospectively analyzed patients' medical records to determine demographic, clinical, and angiographic data
- occlusion site of the basilar artery was subdivided by distal, mid, and proximal BAO
- Successful recananlization TICI 2b/3
- Favorable outcome mRS 012 at 3 months

Methods Statistical analysis

- SPSS
- Independent t-test, Pearson chi-square
- Multivariable logistic regression analyses were performed to identify the collateral circulation scores and other variables as an independent factor for good functional outcomes
- Statistically significant differences were defined as P<0.05.

receiver operating characteristic curve analysis to identify the optimal cutoff point with which to maximize the sensitivity and specificity for discriminating patients with favorable outcomes

Results

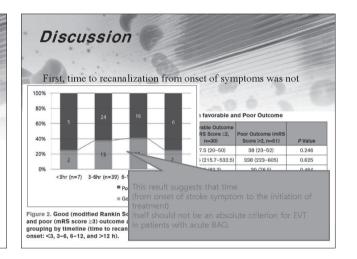
Table 2. Procedural and Clinical Data Between Patients With favorable and Poor Outcome

	Overall, n=81	Favorable Outcome (mRS Score ≤2, n=30)	Poor Outcome (mRS Score >2, n=51)	P Value
Mean procedure time (min), median (IQR)	35 (21-51)	27.5 (20-50)	38 (23-52)	0.246
Onset to recanalization (min), median (IQR)	325 (223-537.5)	311.5 (215.7-532.5)	338 (223-605)	0.625
Successful recanalization, n (%; TICl 2b-3)	64 (79.0)	25 (83.3)	39 (76.5)	0.464
Complete recanalization, n (%; TICl 3)	40 (49.4)	19 (63.3)	21 (41.2)	0.054
Symptomatic ICH, n (%)	6 (7.4)	2 (6.7)	4 (7.8)	0.845
Discharge NIHSS score, median (IQR)	12 (3.5-19)	4 (2-6)	18 (12-32)	< 0.001
Onset to recanalization<6 h, n (%)	46 (56.8)	17 (56.7)	29 (56.9)	0.986
Onset to recanalization<12 h, n (%)	72 (88.9)	27 (90)	45 (88.2)	0.807

ICH indicates intracerebral hemorrhage; IQR, interquartile range; NIHSS, National Institutes of Health Stroke Scale; and TICI, Thrombolys in Cerebral Infarction.

Results

Table 3. ROC Curve Analysis of BATMAN Score and PC-CS Cutoff Value of Good Clinical Outcome (mRS Score 0-2)


	AUC (95% CI)	Best Cutoff Value	Sensitivity	Specificity
BATMAN score	0.701 (0.575-0.827)	6	60.0%	78.4%
PC-CS	0.706 (0.583-0.829)	6	60.0%	74.5%

AUC indicates area under the curve; BATMAN, basilar artery on computed tomography angiography; mRS, modified Rankin Scale; PC-CS, Posterior Circulation Collateral Score; and ROC, receiver operating characteristics.

able 4. Variables Associated Wi	th Good Functional Out	come (mRS	Score 0-2 at 3 Months)
	Univariate Analysis		Multivariate Analysis	
	Odds Ratio (95% CI)	P Value	Odds Ratio (95% CI)	P Value
Age<80	1.50 (0.53-4.22)	0.440		
Baseline NIHSS score <15	6.25 (1.90-20.49)	0.002	8.49 (2.01-35.82)	0.004
BATMAN score ≥6	5.46 (2.03-14.67)	0.001	1.95 (0.56-6.73)	0.292
PC-CS ≥6	4.39 (1.67-11.50)	0.003	3.79 (1.05-13.66)	0.042
Distal BA occlusion	7.08 (2.57-19.53)	<0.001	3.67 (1.10-12.26)	0.035
Onset to recanalization<6 h	0.99 (0.40-2.47)	0.986		
Onset to recanalization<12 h	1.20 (0.28-5.20)	0.807		
Underlying BA stenosis	0.931 (0.38-2.31)	0.877		
Diabetes mellitus	0.56 (0.16-1.95)	0.361		
Hypertension	0.55 (0.22-1.37)	0.204		
Hyperlipidemia	1.02 (0.23-4.62)	0.977		
Smoking	0.66 (0.19-2.32)	0.513		
Previous stroke history	0.59 (0.19-1.84)	0.360		
Atrial fibrillation or cardiac disease	0.98 (0.38-2.48)	0.958		
Successful recanalization (TICI 2b, 3)	1.54 (0.48-4.90)	0.466		

Discussion

Our results were not significantly different from previous findings, but some differences may be considered in the results or their interpretation.

Discussion

Second, in most previous studies, successful recanalization (TICI 2b/3) was a predictor of favorable outcome but not in our study.

We speculate that this result is because of the higher recanalization rate, which has generally improved compared with the past thrombectomy era.

Discussion

5 cases with a favorable outcome without achieving TICI 2b3

-BATMAN score and PC-CS of 6 or more and low NIHSS scores on admission (between 5 and 8)

Table 2. Procedural and Clinical Data Between Patients With favorable and Poor Outcome

	Overall, n=81	Favorable Outcome (mRS Score ≤2, n=30)	Poor Outcome (mRS Score >2, n=51)	P Value
Mean procedure time (min), median (IQR)	01-51)	27.5 (20-50)	38 (23-52)	0.246
Onset to recanalization (min), median (IQR)	325 (223	(015,7-532.5)	338 (223-605)	0.625
Successful recanalization, n (%; TICl 2b-3)				

Successful recanalization, n (%; TICl 2b-3)

Completet recanalization, n (%; TICl 3)

Symptomatic ICH, n (%)

Discharge NIHSS score, median (IQR)

Onset to recanalization<6 h, n (%)
Onset to recanalization<12 h, n (%)

statistical significance, we think that successful recanalization, even complete recanalization, is important in obtaining a good prognosis in patient with acute BAO

Discussion

Third, in terms of occlusion site, our study identified distal BAO as a predictor of favorable outcome

the better collateral status as occlusion occurs in the distal part of the basilar artery

-- our study distal versus proximal BAO

a higher BATMAN score (6.0±1.5 versus 4.5±1.3, P<0.001)

PC-CS (6.0±1.5 versus 4.7±1.2,

lower initial NIHSS scores

(10.9±6.5 versus 14.3±7)

Distal BAO is more likely to have less initial neurological symptoms, a shorter clot burden, and a higher probability of successful recanalization

Conclusion

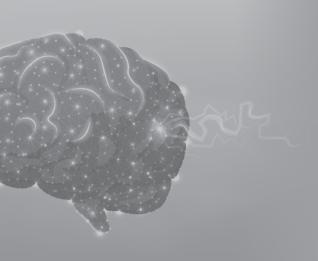
- Good collateral circulation, initial NIHSS score <15, and distal BAO are independent predictors of clinical outcome after EVT in patients with acute BAO.
- In particular, considering that time to recanalization was not a
 prognostic factor, EVT for patients with good initial collateral
 status and distal BAO may be considered even if the treatment is
 started beyond the standard time limits.

연세에스병원 학술상

Advantages of Coil Embolization Performed Immediately After Diagnostic Cerebral Digital Subtraction Angiography in Unruptured Intracranial Aneurysms: Patients' Perspective

Jong-Hoon Kim, Young-Jin Jung, Chul-Hoon Chang

영남대학교병원


Background: We are inevitably faced with the need to perform coil embolization immediately after diagnostic cerebral digital subtraction angiography (DSA) for economic reasons, patient convenience, fear of rupture, and other reasons. Here we report the advantages of coil embolization performed immediately after diagnostic cerebral DSA for unruptured intracranial aneurysms (UIAs) from the patients' perspective.

Methods: Between January 2017 and October 2018, 145 patients were treated for UIAs with endovascular coil embolization at the Yeungnam University Medical Center. There were 87 patients in the group in which coil embolization was to be performed at least 1 week after diagnostic cerebral DSA (regular [R] group) and 58 patients in the group in which coil embolization was to be performed immediately after diagnostic cerebral DSA (immediate [I] group).

Results: There were no statistically significant between group differences in any factor analyzed expect for medical expenses (out-of-pocket costs), 2,218,416 KRW (1963 USD) for the R group and 1,128,906 KRW (999 USD) for the I group (P < 0.001). There were no statistically significant differences in the rate of complications between the 2 groups, with 4 minor complications and 1

morbidity in the R group and 3 minor complications and 1 morbidity in the I group.

Conclusions: Our findings indicate that coil embolization performed immediately after diagnostic cerebral DSA can be a relatively safe alternative approach to treating patients with UIAs.

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

Free Paper II (AVM, AVF, etc.)

좌장: 성재훈(가톨릭대), 김문철(에스포항병원)

Use of prasugrel in flow diverting stents for cerebral aneurysms 김강민(서울대학교병원)

Panel: 정준호(연세대학교 세브란스병원)

FRED for the treatment of large and giant intracranial aneurysms: Incidence of and risk factors for procedure-related complications 정준호(연세대학교 세브란스병원)

Panel: 조수희(울산대학교 강릉이산병원)

Recurrence after Pipeline embolization device for vertebrobasilar dolichoectasia: What can/should we do next? 김민수(가톨릭대학교 의정부성모병원)

Panel: 윤원기(고려대학교 구로병원)

Transarterial embolization through the infraorbital artery of the ethmoidal dural arteriovenous fistula causing recurrent epistaxis: Case report and review of the literature

권민용(계명대학교 동산병원)

Panel: 이광호(경상대학교병원)

Long-term clinical and angiographic outcome of angioplasty and stenting for intracranial stenosis 김재호(연세대학교 강남세브란스병원)

Panel: 박정수(전북대학교병원)

Steroid can induce paraplegia in spinal dural arteriovenous fistula: Case report 이무하(순천향대학교 서울병원)

Panel: 문종현(광주기독병원)

Use of Prasugrel in Flow Diverting Stents for Cerebral Aneurysms

Kang Min Kim¹, Dong Hyun Yoo², Young Dae Cho², Sung Ho Lee¹, Won–Sang Cho¹, Jeong Eun Kim¹, Moon Hee Han², Hyun–Seung Kang¹

¹Departments of Neurosurgery and ²Radiology, Seoul National University Hospital

Objective: Flow diverting stents (FDS) has been widely used for treatment of various cerebral aneurysms. There are related risks of hemorrhagic and ischemic stroke. We evaluated clinical outcome of patients undergoing flow diverting stent implantation with use of prasugrel as prophylactic antiplatelet medication in a tertiary referral hospital.

Methods: Included were 47 patients with 48 aneurysms treated with FDS during the period between November 2014 and August 2020 in this study. Antiplatelet regimen was composed of pre-treatment loading of prasugrel (clopidogrel in 4 cases) and aspirin and post-treatment maintenance for 1 month after FDS implantation. Then, the regimen changed to clopidogrel and aspirin until control angiography at post-treatment 6 months. Medical records and radiological images were reviewed to identify any hemorrhagic and ischemic events related to the treatment.

Result: There were 32 female and 15 male patients and the mean age was 47 years. There were 23 anterior and 25 posterior circulation aneurysms. Nineteen aneurysms (39.6%) were symptomatic. The mean aneurysmal diameter was 19.5 mm (23 mm in the anterior circulation aneurysms, 16 mm in the posterior circulation aneurysms). There were 16 previously coiled aneurysms (33.3%) and 8 partially thrombosed aneurysms (16.7%). Implanted devices included Pipeline (n=38), Surpass (n=5) and FRED (n=5).

During the follow-up period after treatment, 2 aneurysm rupture (4.2%), 1 cerebral infarction (2.1%) and 1 asymptomatic arterial occlusion (2.1%) were identified. The rupture occurred in patients with giant paraclinoid/supraclinoid internal carotid artery aneurysms, and the risk was found to be significant in comparison with infraclinoid location (p=0.04).

Conclusion: The use of prasugrel in patients undergoing FDS implantation seems to be acceptable in terms of ischemic and hemorrhagic stroke. Randomized clinical trials are anticipated in this respect.

FRED for the treatment of large and giant intracranial aneurysms: Incidence of and risk factors for procedure—related complications

Joon Ho Chung

Department of Neurosurgery, Yonsei University College of Medicine, Severance Hospital

Objective: The treatment of large (> 10 mm) and giant (> 25 mm) intracranial aneurysms (IAs) is challenging for endovascular neurosurgeons due to its high rate of recurrence and perioperative complications. Recently, the development of flow diverter stents offers a simple way to treat these difficult lesions with acceptable morbidity and mortality. In a further development, the Flow-Redirection Endoluminal Device (FRED; Microvention) combines an outer self-expanding and dimensionally stable open-pored stent with an inner narrowly braided stent. It is intended to combine easy deployment with flow-redirecting properties. The purpose of this study was to report the author's experiences in using FRED for the treatment of large and giant aneurysms and to evaluate the incidence of and risk factors for procedure-related complications.

Methods: A total of 39 patients were recruited for this study between January 2018 and July 2020. All patients met the following criteria: 1) large and giant IAs with maximum diameter greater than 10 mm, and 2) the patients treated by FRED for those IAs. The incidence of and risk factors for procedure-related complications were retrospectively evaluated. Procedure-related complications are chronologically categorized as acute (within 7 days), subacute (8 to 21 days), and delayed (after 21 days) periods. Follow-up angiography was performed at 2 to 27 months (mean 9.7 months) after the procedure in 38 (97.4%) patients, and clinical follow-up was performed from 1 to 31 months (mean 14.1 months) in all patients.

Result: Of the 39 patients included in this study, procedure-related complications occurred in 8 (20.5%), including 3 (7.7%) in acute, 1 (2.6%) in subacute, and 4 (10.3%) in delayed periods. Asymptomatic complications in 1 (2.6%), thromboembolic complications in 5 (12.8%), and hemorrhagic complications in 2 (5.1%) patients. Foreshortening occurred in 4 (10.3%) patients after deployment of the stent. Non-internal carotid artery (ICA) location of IAs (odds ratio 4.215; 95% confidence interval, 1.439-9.782; p = 0.043) was the only independent risk factor for procedure-related complications on multivariate logistic regression analysis.

Conclusion: The procedure-related complication rate was 20.5% among 39 patients with large and giant IAs treated by FRED. Procedure-related complication might increase when treating large and giant IAs located on non-ICA. Therefore, it might be suggested that endovascular neurosurgeons should concern the location of IAs while planning to treat large and giant IAs by FRED.

Recurrence after Pipeline embolization device for vertebrobasilar dolichoectasia: What can/should we do next?

Min Su Kim, Young-Woo Kim

Department of Neurosurgery, Uijeongbu St, Mary's Hospital, College of Medicine, The Catholic University of Korea

Objective: Vertebrobasilar dolichoectasia (VBD) is characterized by abnormal dilatation, elongation and tortuosity of the vertebral and/or basilar arteries, with symptoms resulting from ischemia, intracranial hemorrhage or brain stem compression. VBD may present with varied clinical syndromes like brain infarction (17.6%), brainstem compression (10.3%), transient ischemic attack (10.1%), hemorrhagic stroke (4.7%), hydrocephalus (3.3%), and subarachnoid hemorrhage (2.6%). The reported 5-year case mortality risk is 36.2%, with ischemic stroke as the most common cause of death. Optimal treatment for VBD is uncertain. There were no studies available that randomized patients for different treatments. Furthermore, treatment specifications were often not available for individual patients.

Methods: case report

Result: Here we report the use of the Pipeline Embolization Device (PED) to treat a patient with VBD who presented with recurrent ischemic stroke. The patient was admitted to our hospital because of headache. MRA showed acute infarction in right cerebellum, fusiform dilatation from left V4 to BA, occlusion in the right vertebral artery. After conservative care, the patient was discharged with dual antiplatelet. However, he subsequently suffered from right side weakness, dysarthria, and was diagnosed with pontine infarction after 7 months from the 1st attack and the dolichoectasia was aggravated. Five PEDs were placed in a telescoping fashion from P1 of PCA segment to V4 of Lt. VA to reconstruct the affected parts of the left vertebral and basilar arteries. After the procedure, the patient gradually recovered without neurological deficit (mRS1). Follow-up cerebral angiogram at six months demonstrated positive remodeling from BA middle portion to BA top, but BA proximal portion has shown vascular recanalization. Cerebral angiogram which was performed, 1 month after planning an additional PED, demonstrated significant reduction of recanalization at the BA proximal portion. So no additional PED was deployed. Follow-up cerebral angiogram at six months demonstrated that aggravated dissection of the BA proximal portion.

Conclusion: This article was designed to discuss the best next treatment for recurrence after pipeline embolization device. What can/should we do next?

Transarterial embolization through the infraorbital artery of the ethmoidal dural arteriovenous fistula causing recurrent epistaxis: Case report and review of the literature

Min-Yong Kwon, Chang-Hyun Kim, Chang-Young Lee

Department of Neurosurgery, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine

Objective: Ethmoidal dural arteriovenous fistulas (DAVFs) are rare but aggressive vascular lesions with high intracranial bleeding risk, requiring active treatment. As other DAVFs, its symptoms can be nonspecific and vary including headache, visual impairment, seizure, or so on. We report an ethmoidal DAVF, which presented with an unusual symptom of recurrent epistaxis and was successfully treated by selective transarterial embolization and review the literature focusing on the anatomical consideration of ethmoidal DAVFs causing epistaxis and treatment approaches.

Methods: A 70-year-old man presented with recurrent intractable epistaxis and complained of a large amount of nasal bleeding as if the faucet had been turned on. Cerebral angiography revealed an ethmoidal DAVF supplied by left anterior ethmoidal artery (AEA), both sphenopalatine arteries, both infraorbital arteries, and right angular artery and drained directly into frontal cortical veins with tortuous arterialized ectasia. Microaneurysms around the fistulous location where multiple feeding arteries converge were demonstrated and thought as the likely source of epistaxis. The fistula was completely occluded using transarterial Onyx embolization through the infraorbital artery, a branch of internal maxillary artery. No complications occurred. Epistaxis has not appeared anymore.

Result: We searched the literature using PubMed database to identify reports similar to our experience and a total of 4 case reports for DAVF causing epistaxis were identified. All five patients including our case were ethmoidal DAVF, which was fed by two or more multiple feeding arteries including AEA and was drained directly into frontal cortical vein or veins, eventually flowing superior sagittal sinus. They had bleeding sources such as microaneurysms associated with feeding artery, enlarged friable vessels with beaded appearance, and aneurysmal-like dilatation of drainage vein in the ethmoid sinus and nasal cavity. The authors thought they were the likely source of epistaxis.

Conclusion: Although extremely rare, ethmoidal DAVFs should be included in the differential diagnosis of recurrent epistaxis. Ethmoidal DAVFs with bleeding sources in the ethmoid sinus and nasal cavity may cause epistaxis. It is important to properly diagnose and treat patients with ethmoidal DAVF presenting with epistaxis based on comprehensive anatomical understanding of the extensive extracranial-extracranial and extracranial-intracranial anastomosis.

Long-term clinical and angiographic outcome of angioplasty and stenting for intracranial stenosis

Sang Kyu Park, Jae Ho Kim, Sang Hyun Suh

Department of Neurosurgery, Gangnam Severance Hospital, Yonsei University College of Medicine

Objective: To analyzed the long-term follow-up results of 5 years of intracranial stenting for intracranial stenosis from three stroke centers

Methods: The primary endpoints were early stroke complications or death within 30 days after stent insertion, and the secondary endpoint was a recurrent stroke between 30 days and 60 months. Correlating factors and Kaplan-Meier survival curves for recurrent stroke and in-stent restenosis (ISR) were also obtained.

Result: Seventy-three PTAS in 71 patients were examined in this study. The primary and secondary endpoints were all 8.2% (n=6), and restenosis was 13.7% (n=10) during the 5-year follow-up. The primary endpoints were significantly frequent in the high National Institutes of Health Stroke Scale (NIHSS) and early stent (≤7 days after dual antiplatelet medication) groups. Secondary endpoint and ISR were identically frequent in the younger age group and in the presence of tandem stenosis in other major intracranial arteries. The cumulative probability of recurrent stroke and ISR at 60 months were 16.4% and 14.1%, respectively.

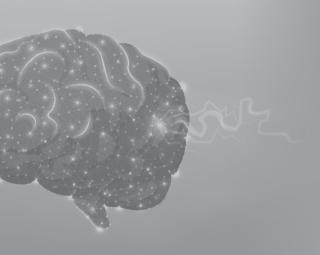
Conclusion: This study shows that PTAS is safe and effective for major ICAS. Reducing the early complication rate is still an important factor, despite the fact that long-term stroke recurrence and restenosis rates were low.

Steroid can induce paraplegia in spinal dural arteriovenous fistula: Case report

Mu Ha Lee, Sukh Que Park, Hye Ran Park, Hyung Ki Park, Jae Chil Chang, Sung Jin Cho

Department of Neurosurgery, Soonchunhyang University Seoul Hospital

Objective: Spinal dural arteriovenous fistulas(SDAVFs) are the most common spinal vascular anomaly and account 70% of all vascular spinal malformations. But SDAVF are often underdiagnosed or misdiagnosed as peripheral neuropathy, spinal stenosis, multiple sclerosis, transverse myelitis. And if SDAVF is not treated properly can cause progressive paraplegia or quadriplegia. The pathophysiology is that extramedullary shunts between the spinal radicular artery and the vein induce local venous hypertension, spinal cord edema, ischemia, and infarction.


Steroids are empirically used to treat patients with myelopathy. But there are some reports that patient with SDAVF experienced clinical deterioration after steroid therapy.

In our case, there was a patient who were suffering from acute neurological deterioration after steroid treatment. So we would suggest you about our experience through this case.

Methods: A 52-year-old man presented with 3-month history of progressive bilateral leg pain and weakness. At first, he was admitted to Orthopedic surgery department due to spinal stenosis on L4/5, L5/S1. Because there was a suspicion of AV malformation in the outside MRI reading, Additional enhanced MRI scan was performed. In that MRI, there were extensive perimedullary dilated vessels from T9 to conus medullaris with extensive cord swelling. So we performed Spinal angiography to rule out SDAVFs and could diagnose SDAVF. So we planed endovascular treatment.

Result: Before the endovascular treatment, we gave patient IV methylprednisolone to control spinal cord swelling. But he experienced acute neurological deterioration (deterioration of both leg weakness). A few days after surgery, his symptoms got a little better, but he still had a disability so he can't walk. For rehabilitation, he was transferred to the department of Rehabilitation Medicine. He complained of persistent lower back pain despite continuous rehabilitation. To relieve his back pain, Caudal block was performed. But he experienced one more neurological deterioration after caudal block. And a few days later, he recovered similar to before the caudal block. Follow-up MRI was performed due to consistent back pain, recurrence of SDAVF was found. We planned endovascular treatment, also gave IV methylprednisolone before the endovascular treatment to reduce cord swelling. After administration of steroid, he experienced acute neurological deterioration one more time.

Conclusion: Steroid can aggravate neurological symptoms in patient with SDAVF and should be used carefully and closely monitored after administration. So, Using steroid in patients with SDAVF should be considered carefully.

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

Symposium II. Neuro Endovascular Therapy in era of COVID-19

좌장: 권오기(서울대), 장철훈(영남대)

1. Reviews of COVID-19 Focus on Neurovascular Presentation 오세양(인하대)

2. Sharing Experiences of Neuroendovascular Surgery in COVID-19 patient or suspected 김성림(가톨릭대)

3. Prevention and Control of COVID-19 in Neuroendovascular Surgery: KoNES' Guideline 남택균(중앙대)

Reviews of COVID-19 Focus on Neurovascular Presentation

오세양

인하대

2019년 12월 중국 후베이성 우한시에서 원인미상의 호흡기질환이 발생하였습니다. 이 호흡기 질환은 호흡기 비말을 통한 강한 전염성을 갖고 있었고, 고령, 기저 질환자 등 면역력이 저하된 계층에 대해 높은 치명률을 보였습니다. 연구진은 이 전염성 질환이 coronaviridae에 속하는 RNA virus계열의 SARS—CoV—2 pathogen virus가 원인이 되는 병원체임을 확인하였고 이를 Coronavirus disease 2019 (COVID—19)로 명명하였습니다. COVID—19는 전염력이 매우 강하여 결국 international outbreak을 일으켜 WHO에서 2020년 3월 worldwide pandemic을 선언하게 되었음은 주지의 사실입니다.

이러한 COVID—19 pandemic 상황에서 다수의 환자를 진료하고 시간을 다투는 중증의 환자를 주로 진료하는 신경외과 영역, 특히 neurovascular 영역에서의 COVID—19가 주는 영향에 주목할 필요가 있습니다. 초기의 COVID—19 pandemic 이 우려되는 상황에서 COVID—19가 원인 혹은 악화 요인이 된 stroke에 대한 case report, case series등이 보고되었고, global pandemic이후 북미, 유럽을 포함한 각국의 confinement measures, mitigate effort등의 영향으로 primary stroke center 등을 중심으로 emergency preparedness guideline을 제정해 학계에 보고하고 있습니다. PUBMED, MEDLINE을 통해 COVID—19와 neurovascular disease와 연관된 검색 문헌 결과 COVID + stroke : 925 results; COVID + neurovascular : 72 results; COVID + neurosurgery : 865 results를 검색할 수 있었고, 주요 주제로 neurovascular disease, stroke를 다룬 49개의 논문과 neurosurgery를 주제로 다룬 22개의 논문을 selection하였습니다. 그 중 1. The potential mechanisms of neurovascular disease with COVID—19; 2, Changes and challenges of practical management on neurovascular disease; 3. Recommended guidelines for neurovascular emergency fields 등의 주제들에 대해 중점적인 정보를 주는 논문을 선별하여 review하였습니다.

Sharing Experiences of Neuroendovascular Surgery in COVID-19 patient or suspected

김성림
가톨릭대

Prevention and Control of COVID-19 in Neuroendovascular Surgery: KoNES' Guideline

남택균

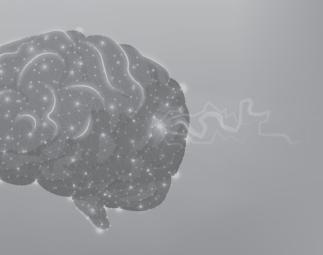
중앙대학교병원 신경외과

Cov-2), has been spreading in many countries, and this coronavirus epidemic has been labeled a world pandemic by the WHO. Stroke is a common disease with high morbidity, high disability, high mortality and high recurrence rate. Neuroendovascular surgery plays an important role in the diagnosis and treatment of stroke, especially for acute stroke, which could significantly reduce the mortality and disability rates. During the epidemic, neuroendovascular staff are faced with the dual pressures of disease treatment and infection prevention. In the fight against the virus, many medical staffs have been infected. Therefore, the Korean NeuroEndovascular Society (KoNES) has recognized the need to create guidelines to protect patients and medical staff. The aim was to provide protective strategies and recommendations for medical staff to carry out neuroendovascular procedures under the circumstances of the COVID-19 epidemic, and to provide references for neuroendovascular surgeons.

There are three basic principles. First, according to clinical needs, neuroendovascular surgery can be divided into emergency and elective surgery (or non-emergency surgery). It is recommended to suspend non-emergency neuroendovascular surgeries, especially for the highly suspected and confirmed patients during the epidemic period. Second, neuroendovascular staff should participate in the training to update their knowledge of the epidemic, especially the epidemiological characteristics and diagnostic criteria of COVID-19, the stratified precautions for medical staff during the COVID-19 epidemic, and the instructions regarding common disinfection supplies, etc. At the same time, temperature detection should be strengthened when entering the outpatient department, ward and catheterization lab. In addition, it is recommended to strengthen the immunity of staff in their daily life through reasonable rest, moderate exercise and a well-balanced diet. Third, medical institutions should inform patients without urgent medical to postpone treatment through extensive publicity and recommend them to consult health problems on the online clinic. Patients should wear facial masks and keep a distance of more than 1 meter from others during the whole period in hospital.

Infection prevention and control strategies for emergency stroke patients

- Medical treatment process for emergency patients
 - 1. A standard screening procedure should be performed for all emergency patients before their admission.
 - 2. It is recommended that the confirmed patients without urgent medical needs should be transferred to the fever clinic


first. For the critically ill patients combined with stroke, who are not suitable to be transferred to the fever clinic, the expert group for COVID-19 in the hospital should hold a consultation to determine whether they were infected.

- 3. Patients with subarachnoid hemorrhage should be strictly identified in accordance with the above procedures, as fever is a common symptom for this condition. For patients who are not completely excluded from the risk of COVID-19 infection, angiography, craniotomy or interventional treatment are not suggested to be performed in an emergency manner. Treatment with different protection levels could be arranged after the COVID-19 screening result is available.
- 4. Use currently available guidelines and recommendations for identification and management of large vessel occlusion whenever possible. Head CT plus chest CT are recommended in the diagnostic workup of acute stroke patients. Before the operation, a quick consultation should be performed by the infectious diseases department or respiratory department to determine whether the patient is infected.

• Strategies of self-protection for medical staff

- 1. Neuroendovascular surgeons involved in emergency work should implement the first-level precautions and immediately increase the level of precaution once the suspected case is admitted.
- 2. The consultation room should be fixed to ensure that there is no crossover with the infected patients during diagnosis and treatment.

These recommendations are intended as a guide to decision-making regarding neuroendovascular therapy during the COVID-19 pandemic. In developing own process, each institution must respond to specific institutional challenges, including availability of resources and staff, which may dramatically change over a short time period. Adapting an existing and evolving workflow requires input, coordination, and engagement across hospital units and disciplines, and A multidisciplinary approach that is proactive rather than reactionary will best serve patients with acute stroke during the COVID-19 pandemic.

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

Free Paper III (Ischemia)

좌장: 유승훈(울산대), 강현승(서울대)

The usefulness of emergent medical system in patients with acute ischemic stroke – a retrospective single center experience 이현곤(인제대학교 해운대백병원)

Panel: 이종영(한림대학교 강동성심병원)

Preliminary experience of Neuroform Atlas stenting as a rescue treatment after failure of mechanical thrombectomy caused by residual intracranial atherosclerotic stenosis 이호준(가톨릭대학교 성빈센트병원)

Panel: 신희섭(경희대학교 강동경희대병원)

Mechanical thrombectomy of M2-occlusion for minor symptom patients 이동훈(가톨릭대학교 성빈센트병원)

Panel: 구해원(인제대학교 일산백병원)

Impact of time interval between index event and stenting on periprocedural risk in patients with symptomatic carotid stenosis 황교준(분당제생병원)

Panel: 이현곤(인제대학교 해운대백병원)

Feasibility and safety of FiRst stEnting strategy witHout retrieval (FRESH) using Solitaire FR as a treatment for emergent large vessel occlusion due to underlying intracranial atherosclerosis 김종훈(영남대학교병원)

Panel: 이호준(가톨릭대학교 성빈센트병원)

Factors associated with procedural thromboembolisms after mechanical thrombectomy for acute ischemic stroke 김승환(성균관대학교 삼성창원병원)

Panel: 오재상(순천향대학교 천안병원)

The usefulness of emergent medical system in patients with acute ischemic stroke – A retrospective single center experience

Hyun Gon Lee¹, Seung Hwan Kim², Sung-Chul Jin¹

¹Department of Neurosurgery, Inje university, Haeundae Paik Hospitial ²Department of Neurosurgery, Sungkyunkwan university, Samsung Changwon Hospital

Objective: Reducing the door to puncture time improves the clinical outcome in the treatment using mechanical thrombectomy of anterior cerebral large artery occlusion. We made the critical call system (CCS) as the pre-hospital communication between interventionist and Emergency medical technician for reducing the door to puncture time.

Methods: In 182 Patients undergoing mechanical thrombectomy at our hospital between January 1, 2018, and December 31, 2019, we compared the door to puncture time and 90 days modified Rankin scale (mRS) between the groups of CCS and non-CCS.

Result: Fifty-five patients presented to the EMS group, Seventy-six patients presented to the non-EMS group. The door to puncture time was significantly lower in the EMS group than in non-EMS groups (80.78 minutes versus 198.64 minutes, p-value: 0.001). The NIHSS score at arrival was significantly higher in the EMS group than in the non-EMS group (13.47 points versus 11.16 points, p-value: 0.014). The successful recanalization (modified Thrombolysis in Cerebral Infarction grade 2b-3) was no difference between the two groups. (EMS versus non-EMS, 46/55(83.6%) versus 62/76(81.6%), p-value: 0.760). The clinical outcome that was the state of no significant disability (mRS 0-1) was no different in the EMS group and non-EMS group. (24/55 (43.6%) versus 27/76 (35.5%), p-value: 0.347). However, the clinical outcome of no symptom (mRS: 0) was higher in the EMS group than non-EMS group. (9/55 (16.4%) versus 5/76 (6.6%), p-value: 0.074).

Conclusion: The EMS could reduce the door to puncture time. It might improve the clinical outcome in the patient with anterior cerebral large artery occlusion.

Preliminary experience of Neuroform Atlas stenting as a rescue treatment after failure of mechanical thrombectomy caused by residual intracranial atherosclerotic stenosis

Ho Jun Yi, Jae Hoon Sung, Dong Hoon Lee, Seung Yoon Song

Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea

Objective: The low-profile Neuroform Atlas stent can be deployed directly without an exchange maneuver by navigating into the Gateway balloon. This retrospective study assessed the safety and efficacy of Neuroform Atlas stenting as a rescue treatment after failure of mechanical thrombetomy (MT) for large artery occlusion (LAO).

Methods: Between June 2018 and December 2019, a total of 31 patients underwent Neuroform Atlas stenting with prior Gateway balloon angioplasty after failure of conventional MT caused by residual intracranial atherosclerotic stenosis (ICAS). Primary outcomes were successful recanalization and patency of the vessel 24 hours after intervention. Secondary outcomes were vessel patency after 14 days and 3-month modified Rankin Scale (mRS). Peri-procedural complications, intracerebral hemorrhage (ICH), and 3-month mortality were reviewed.

Result: With a 100% of successful recanalization, median value of stenosis was reduced from 79.0% to 23.5%. Twenty-eight (90.3%) patients showed tolerable vessel patency after 14 days. New infarctions occurred in three patients (9.7%) over a period of 14 days; two patients (6.5%) underwent stent occlusion at 24 hours, and the other patient (3.2%) with delayed stent occlusion had a non-symptomatic dot infarct. There were no peri-procedural complications. Two patients (6.5%) developed an ICH immediately after the procedure with one of them is symptomatic.

Conclusion: Neuroform Atlas stenting seems to be an effective and safe rescue treatment modality for failed MT with residual ICAS, by its high successful recanalization rate with tolerable patency, and low peri-procedural complication rate. Further multicenter and randomized controlled trials are needed to confirm our findings.

Mechanical thrombectomy of M2-occlusion for minor symptom patients

Dong Hoon Lee, Jae Hoon Sung, Ho Jun Yi, Seung Yoon Song, Dong Sub Kim

Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea

Objective: While the effectiveness of mechanical thrombectomy in the M1 segment occlusion is approved for patients with severe impairment, there is a lack of evidence for a potential benefit of mechanical thrombectomy in patients with minor symptoms. The purpose of this study was to evaluate the efficacy and safety of mechanical thrombectomy for distal occlusion types in the anterior circulation (M2-segment) in patients with low National Institutes of Health Stroke Scale (NIHSS) scores.

Methods: A retrospective analysis of 85 consecutive patients with anterior circulation ischemic stroke due to M2 occlusion detected by computed tomography angiography and treated with mechanical thrombectomy at our hospital between April 2012 and August 2020 was performed. NIHSS, modified Rankin Scale (mRS) scores between admission and discharge were compared with paired Mann–Whitney test, and recanalization rate and complications were assessed in patients with NIHSS≤5 at admission.

Result: Thirty-five patients were included with a median NIHSS score of 4. NIHSS score (median: 3 vs. 0.8; p<0.001) showed significant improvement from admission to discharge after mechanical thrombectomy. The recanalization rate was Thrombolysis in Cerebral Infarction (TICI) 2b to 3 in 34 of 35 patients (97.1%). In one patient, procedure-related parent artery rupture occurred during the mechanical thrombectomy. Good clinical outcomes (mRS score 0 - 2) at a 3-month follow-up were observed in 100% of patients.

Conclusion: Mechanical thrombectomy might lead to a significantly improved clinical outcome also for patients with low NIHSS score due to M2 segment occlusion. Therefore, stent retriever-based thrombectomy might also be considered for patients with minor symptoms because of an acute M2-occlusion.

Impact of time interval between index event and stenting on periprocedural risk in patients with symptomatic carotid stenosis

Gyo Jun Hwang¹, Sung Han Oh¹, Jong Joo Lee¹, Mi Kyung Kim¹, Hyeon Gon Kim¹, Bong Sub Chung², Jong Kook Rhim³, Seung Hun Sheen⁴, Tae Hyung Kim⁵

¹Department of Neurosurgery, Bundang Jesaeng General Hospital ²Department of Neurosurgery, Anyang Sam Hospital ³Department of Neurosurgery, Jeju National University Hospital ⁴Department of Neurosurgery, Bundang CHA Medical Center ⁵Department of Neurosurgery, Pyeongtaek St. Mary's Hospital

Objective: The purpose of this study was to evaluate the impact of time interval between index event and stenting on the periprocedural risk of stenting for symptomatic carotid stenosis and to determine the optimal timing of stenting.

Methods: This retrospective study included 491 (322 symptomatic [65.6%] and 169 asymptomatic [34.4%]) patients undergoing carotid stenting. The symptomatic patients were categorized into Day 0-3, 4-7, 8-10, 11-14, 15-21, and >21 groups according to the time interval between index event and stenting. Periprocedural (≤30 days) risk for clinical (any neurological deterioration) and radiological (new infarction on postprocedural diffusion-weighted imaging) events of stenting in each time interval versus asymptomatic stenosis was calculated with logistic regression analysis adjusted for confounders, and provided as odds ratio (OR) and 95% confidence interval (CI).

Result: Overall clinical event rate (4.3%) of stenting for symptomatic carotid stenosis was higher than that for asymptomatic stenosis (1.2%; OR, 3.979 [95% CI, 1.093-14.489]; p=0.036). Stenting in Day 0-3 (13.2%; OR, 10.997 [95% CI, 2.333-51.826]; p=0.002) and Day 4-7 (8.3%; OR, 6.775 [95% CI, 1.382-33.227]; p=0.018) was associated with high risk for clinical events. However, the clinical event rates in stenting after 7 days from index event (Day 8-10, 1.8%; Day 11-14, 2.5%; Day 15-21, 0%; Day >21, 2.9%) were not different from that in stenting for asymptomatic stenosis. Overall radiological event rate (55.6%) in symptomatic stenosis was also higher than that in asymptomatic stenosis (35.5%; OR, 2.274 [95% CI, 1.553-3.352]; p<0.001). The high risk for radiological events was maintained in all time intervals (Day 0-3 : 55.3%; OR, 2.224 [95% CI, 1.103-4.627]; p=0.026; Day 4-7 : 58.3%; OR, 2.543 [95% CI, 1.329-4.949]; p=0.005; Day 8-10 : 53.6%; OR, 2.096 [95% CI, 1.138-3.889]; p=0.018; Day 11-14 : 57.5%; OR, 2.458 [95% CI, 1.225-5.021]; p=0.012; Day 15-21 : 55.6%; OR, 2.271 [95% CI, 1.099-4.764]; p=0.028; Day >21 : 54.8%; OR, 2.203 [95% CI, 1.342-3.641]; p=0.002).

Conclusion: This study showed that as stenting was delayed, the periprocedural risk for clinical events decreased. The clinical event risk was high only in stenting within 7 days and comparable with that for asymptomatic stenosis in stenting after 7 days from index event, although the radiological event risk was not affected by stenting timing. Therefore, our results suggest that delayed stenting after 7 days from symptom onset is a safe strategy for symptomatic stenosis.

Feasibility and safety of FiRst stEnting strategy witHout retrieval (FRESH) using Solitaire FR as a treatment for emergent large vessel occlusion due to underlying intracranial atherosclerosis

Jong-Hoon Kim, Young-Jin Jung, Chul-Hoon Chang

Department of Neurosurgery, Yeungnam University Medical Center

Objective: The optimal treatment for underlying intracranial atherosclerosis (ICAS) in patients with emergent large vessel occlusion (ELVO) remains unclear. Reocclusion during endovascular treatment (EVT) occurs frequently (57.1–77.3%) after initial recanalization with stent retriever (SR) thrombectomy in ICAS-related ELVO. This study aimed to compare treatment outcomes of first stenting strategy without retrieval (FRESH) using the Solitaire FR versus SR thrombectomy in patients with ICAS-related ELVO.

Methods: We retrospectively reviewed consecutive patients with acute ischemic stroke (AIS) and intracranial ELVO of the anterior circulation who underwent EVT between January 2017 and December 2019 at Yeungnam University Medical Center. Large vessel occlusion (LVO) of the anterior circulation was classified by etiology: no significant stenosis after recanalization (Embolic group), remnant stenosis > 70%, or lesser degree of stenosis with a tendency toward reocclusion and/or flow impairment during EVT (ICAS group). The ICAS group was divided into the SR thrombectomy group (FRESH[-]-ICAS) and the first stenting strategy without retrieval group (FRESH[+]-ICAS).

Result: A total of 105 patients (62 men, 43 women; median age, 71 years; range, 62.5–79 years) were included. The embolic, FRESH(-)-ICAS, and FRESH(+)-ICAS groups comprised 66 (62.9%), 26 (24.7%), and 13 (12.4%) patients, respectively. There were no significant differences between the FRESH(-)-ICAS and FRESH(+)-ICAS groups in symptom onset to door time, but puncture to recanalization time was significantly shorter in the latter (54 vs. 39 min, p = 0.032). There were fewer stent retrieval passes but more first-pass recanalizations in the FRESH(+)-ICAS group (p < 0.001). Favorable functional outcomes were significantly more frequent in the FRESH(+)-ICAS group (84.6% vs. 42.3%; p = 0.017).

Conclusion: Our study findings suggest that the FRESH, rather than SR thrombectomy, could be a treatment option for ICAS-related ELVO.

Factors associated with procedural thromboembolisms after mechanical thrombectomy for acute ischemic stroke

김승환, 이상혁, 남택민, 장지환, 이영민, 김영준, 김준수, 김규홍, 어환

성균관대학교 삼성창원병원 신경외과

Objective: Procedural thromboembolisms after mechanical thrombectomy (MT) for acute ischemic stroke has rarely been studied. We retrospectively evaluated factors associated with procedural thromboembolisms after MT using diffusion-weight imaging (DWI) within 2 days of MT.

Methods: From January 2018 to March 2020, 78 patients with acute ischemic stroke who underwent MT were evaluated using DWI. Procedural thromboembolisms were defined as new cerebral infarctions in other territories from the occluded artery on DWI after MT.

Result: Procedural thromboembolisms were observed on DWI in 16 patients (20.5%). Procedural thromboembolisms were associated with old age (73.8 ± 8.18 vs. 66.8 ± 11.2 years, p = 0.021), intravenous (IV) thrombolysis (12 out of 16 (75.0%) vs. 25 out of 62 (40.3%), p = 0.023), heparinization (4 out of 16 (25.0%) vs. 37 out of 62 (59.7%), p = 0.023), and longer procedural time (90.9 ± 35.6 vs. 64.4 ± 33.0 min, p = 0.006). Multivariable logistic regression analysis revealed that procedural thromboembolisms were independently associated with procedural time (adjusted odds ratio (OR); 1.020, 95% confidence interval (CI); 1.002-1.039, p = 0.030) and IV thrombolysis (adjusted OR; 4.697, 95% CI; 1.223-18.042, p = 0.024). The cutoff value of procedural time for predicting procedural thromboembolisms was ≥71 min (area under the curve; 0.711, 95% CI; 0.570-0.851, p = 0.010).

Conclusion: Procedural thromboembolisms after MT for acute ischemic stroke are significantly associated with longer procedural time and IV thrombolysis. This study suggests that patients with IV thrombolysis and longer procedural time (≥71 min) are at a higher risk of procedural thromboembolisms after MT for acute ischemic stroke.

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

Poster Session

좌장: 정진영(연세에스병원), 장경술(가톨릭대)

P-1. Advanced management of emergent large vessel occlusion with intracranial atherosclerosis in acute ischemic stroke 노윤호(순천향대학교 천안병원)

P-2. The staged embolization for ruptured AChoA aneurysms with maximum intraoperative monitoring: Two cases 신동성, 김범태(순천향대학교 부천병원)

P-3. Histological study of the normal vertebral artery - Induction site of dissecting aneurysms-신동성, 김범태(순천향대학교 부천병원)

P-4. Tentorial dural arteriovenous fistula supplied by the artery of Davidoff and Schechter in the fetal type posterior cerebral artery 권민용(계명대학교 동산병원)

P-1

Advanced management of emergent large vessel occlusion with intracranial atherosclerosis in acute ischemic stroke

Yun-Ho Noh, Jae-Sang Oh, Seong-Ho Lee, Dong Seong Shin, Dong-Kyu Yeo, Sung Ho Kim, Sukh Que Park, Seok-Mann Yoon, Bum-Tae Kim

Departement of Neurosurgery, Soonchunhyang Cheonan University Hospital

Objective: Failed thrombectomy for emergent large vessel occlusion (ELVO) due to intracranial atherosclerosis (ICAS) is frequently encountered in Korea. We investigated the optimal management protocol for ELVO with ICAS.

Methods: From 2011 Jan to 2019 Dec, total 68 cases of ELVO with ICAS were confirmed on angiographic findings. Among them, recanalization failure in spite of 3 times of mechanical thrombectomy occurred in 36 cases. Three additional managements after thrombectomy were performed as follows; 14 cases of intracranial stenting and tirofiban injection simultaneously (ICS+Tiro), 9 cases of intracranial stenting without tirofiban injection (ICS), 6 cases of tirofiban injection without intracranial stenting (Tiro), and 7 cases of conservative management (ConsTx). And we compared about modified TICI grade, postoperative intracranial hemorrhage (ICH) on post-procedure and modifieid Rankin scale (mRS) after 3 months.

Result: Moidified TIGI (m-TICI) grade 2b or 3 were 100% (n=14) in ICS+Tiro, 56% (n= 5) in ICS, 67% (n=4) in Tiro, and 0% (n=0) in ConsTx. In ICS+Tiro, m-TICI 3 were 93% (n=13). Postoperative ICH was occurred in 1 case in all group. The percentage of 3 months mRS 0-2 were highest in ICS+Tiro (57%), followed by Tiro (50%), ICS (22%), and ConsTx. (0%).

Conclusion: In failed thrombectomy due to ICAS, emergent intracranial stenting with continuous injection of Tirofiban is effective and safe.

P-2

The staged embolization for ruptured AChoA aneurysms with maximum intraoperative monitoring: Two cases

Hoon Seok, Dong Seong Shin, Bum-Tae Kim

Department of Neurosurgery, Soonchunhyang University Bucheon hospital

Objective: Endovascular treatment (EVT) of ruptured anterior choroidal artery (AChoA) may be challenging due to the risk of occlusion of such a small and eloquent artery as the AChoA. We here in present the successful EVT of two ruptured AChoA aneurysms without neurological complications with maximum intraoperative monitoring.

Methods: 2 case presentation

Result: 44-years old male has visited with subarachnoid hemorrhage. CTA showed the 4.4mmx2.5 mm sized lobulated aneurysm on left AchoA. On DSA, AchoA arised from the proximal portion of broad necked aneurysm. Coil embolization has been performed for the distal ruptured sac of AchoA aneurysm with 2 microcatheters. 3 months after the first EVT, the second stage stent assisted coil embolization has been performed with the dual antiplatelets loading. During the second EVT, ultrasound guided femoral artery puncture, intraoperative monitoring(IOM), oximetry monitoring, activated clotting time (ACT) monitoring have been applied. Complete occlusion of aneurysm has been done without neurological complications.

42-years old male has admitted with symptoms of sudden bursting headache. CTA and DSA showed subarachnoid hemorrhage and the lobulated aneurysm on the right AchoA sized with 3.9mmX2.9mm. AchoA raised from aneurysmal neck. The ruptured aneurysmal dome was secured by coil embolization with two microcahteters. The second coil was protruded to AchoA origin after the frame coil delivered successfully. Securing aneurysmal dome was confirmed from several times angiography without second coil delivery and AchoA flow was intact. 3 days later, stent assist coil embolization was performed with antiplatelet agent use satisfactory. During the second EVT, maximum monitoring has been applied. The aneurysm was occluded completely without AchoA flow interruption.

Conclusion: The staged embolization for ruptured AchoA aneurysms with maximum monitoring of ultrasound applications, platelet function test, IOM, oximetry and optimal blood levels of ACT might be warranted.

Histological study of the normal vertebral artery - Induction site of dissecting aneurysms—

Bum-Tae Kim¹, <u>Dong Seong Shin</u>¹, Jae-Sang Oh¹, Sukh Que Park¹, Seok-Mann Yoon¹, Jae Ho Lee², Duk-Soo Kim²

¹Department of Neurosurgery, ²Department of Anatomy Soonchunhyang University Bucheon hospital

Objective: Histological evaluation of dissecting aneurysms of the cerebral arteries has suggested that defects in the internal elastic lamina (IEL) induce dissection of the arterial wall. Dissecting aneurysms occur most frequently in the vertebral artery (VA).

Methods: The present study examined sections of the normal VA to elucidate the mechanisms of arterial dissection. Bilateral VAs (24 vessels) were obtained from 12 formalin fixed cadavers who died of causes other than intracranial lesions. The VAs were detached from the VA union to the point penetrating the dura mater. The VAs were cut at 5-mm intervals from the VA union, and each segment was observed using Masson's trichrome staining for elastic fibers and its thickness was measured by NIH ImageJ (Wayne Rasband@R).

Result: There was a high incidence of IEL thinning areas at the medial wall of both VAs. The thinning of tunica media was observed/measured at the same IEL thinning wall.

Conclusion: The vascular strength of IEL thinning areas at the medial wall of both VAs may induce the occurrence and progression of arterial dissection.

P-4

Tentorial dural arteriovenous fistula supplied by the artery of Davidoff and Schechter in the fetal type posterior cerebral artery

Min-Yong Kwon, Chang-Hyun Kim, Chang-Young Lee

Department of Neurosurgery, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine

Objective: Tentorial dural arteriovenous fistula (TDAVF) is occasionally supplied from meningeal branches of posterior cerebral artery (PCA) or superior cerebellar artery. The artery of Davidoff and Schechter (ADS) is the only meningeal branch originating from the peduncular or ambient segment of PCA, supplying the posterior medial tentorium and posterior falx cerebri at the falcotentorial junction. We report an interesting case of TDAVF, which was supplied by the ADS in the fetal type PCA and was successfully treated by endovascular treatment.

Methods: A 63-year-old man with sudden left vision loss showed cilioretinal artery occlusion on funduscopic examination and plaques of left internal carotid artery on carotid ultrasonography. However, cerebral angiography accidentally revealed a galenic type of TDAVF supplied by the ADS in the fetal type PCA and drained directly into vein of Galen with reflux to the basal vein of Rosenthal and lateral mesencephalic vein. The feeding artery ran long in the ambient and quadrigeminal cistern around the midbrain beneath the fetal PCA, and made a sharp angulated upward turn toward the falcotentorial junction to supply the posterior medial tentorium. The fistula was completely occluded through the transarterial Onyx embolization of the ADS. No complications occurred. follow-up imaging performed 3 months later showed durable cure of the fistula.

Result: -

Conclusion: The recognition and understanding of ADS, the meningeal branch of PCA, is important for the endovascular treatment of TDAVF. We were able to safely perform transarterial Onyx embolization because of its long driving pathway to strengthen the reflux plug.

MEMO

MEMO	

MEMO

2020 대한뇌혈관내치료의학회 정기학술대회 및 총회

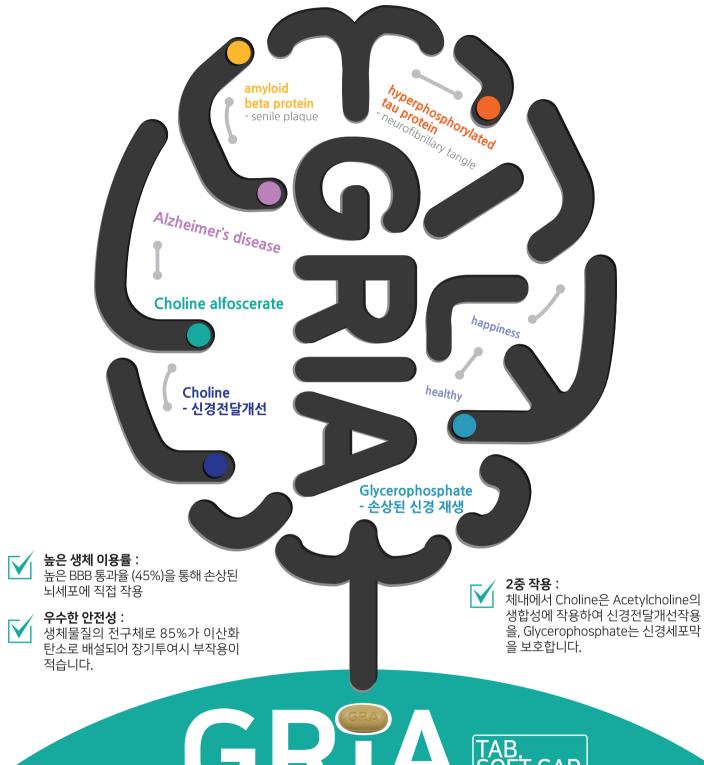
인 쇄 2020년 11월 25일

발 행 2020년 11월 26일

발 행 처 대한뇌혈관내치료의학회

회 장 윤석만

총무이사 박석규


학술이사 권순찬

소 서울시 서초구 서초대로 350 (서초동 동아빌라트 2타운) 407호

제 작 엘에스커뮤니케이션즈

소 서울특별시 동대문구 천호대로85길 17 압구정빌딩 6층

TEL) 02) 476-6718

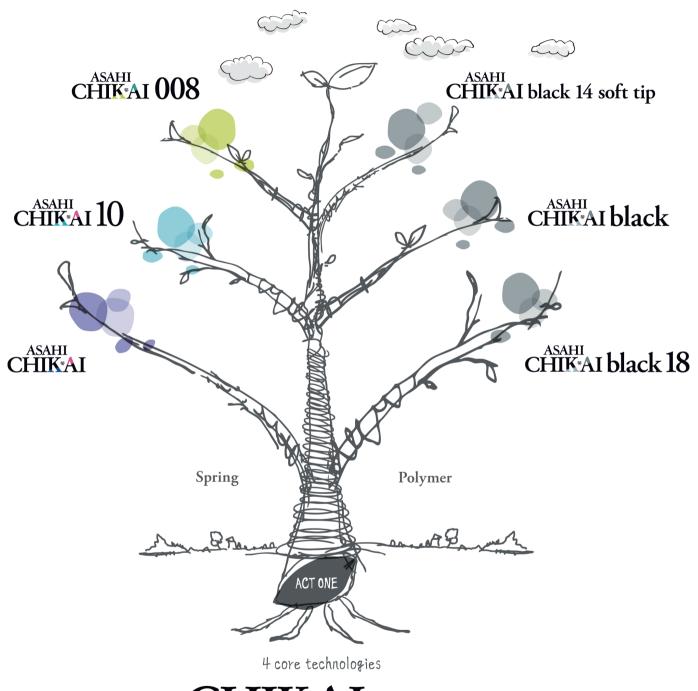
(Choline alfoscerate 400mg)

Prime

- 본 의약품은 엄격한 품질관리를 한 제품입니다. 구입시 사용기간이 경과되었거나 변질, 변패 또는 오손된 제품이 발견될 경우에는 구입처를 통해 교환하여 드립니다. 개정일자 이후 변경된 내용은 식약처 온라인의약도서관(http://durg.mfds.go.kr)에서 확인하실 수 있습니다. 부작용 피해구제 신청: 한국의약품안전관리원 (1644-6223)

- * <u>반드시 의사, 약사와 상의하고 사용상의 주의사항 및</u> 부작용을 잘 읽은 다음 사용하시기 바랍니다.
- 서울 특별시 영등포구 선유로 70 3층(문래동,우리벤처타운 II) Tel 070)7733-0810

High Purity Rosuvastatin Rovetin Tab.


이상지질혈증을 처음 진단받은 환자에게, 일동제약이 직접 생산하는 <mark>로베틴</mark>으로 지질관리를 시작하세요.

Rosuvastatin 5mg, 10mg, 20mg

Precise, and durable guidewires for neuro interventional procedures

CHIKAI Family

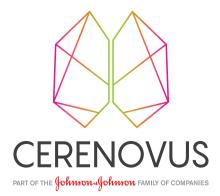
For microcatheters with 0165" - 021" ID

New range for more treatment options

3.0mm-6.5mm stent diameter

ACCERO STENT

Self-expanding braided stent
Brilliant visibility
Excellent opening behaviour & adaptability
For microcatheters with 0165" - 017" ID


microcoil

- Random Complex Shape Technology
- Low Coil Profile 0.009" Primary Wind
- Complete Product Offering

ORDERING INFORMATION

GALAXY G3 Mini Microcoil GLM910010 1 1 GLM910015 1.5 GLM910020 1 2.5 GLM910025 1 GLM910030 3 GLM910040 1 4 GLM915020 1.5 2.5 GLM915025 1.5 GLM915030 1.5 3 GLM915040 1.5 GLM920030 2 3 GLM920040 2 4 GLM920060 2 6 GLM925035 2.5 3.5 GLM925045 2.5 4.5 GLM925055 2.5 5.5 GLM930040 3 GLM930060

https://www.jnjmedicaldevices.com/en-US

Perclose ProGlide™

Suture-Mediated Closure System

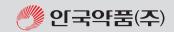
10 MILLION+ REPAIRS[†]

DON'T
JUST CLOSE.
REPAIR.

Perciose Glide

†January 2020 Finance Report. Data on file at Abbott

*On Nov. 8, 1993, the first (Perclose) patent was filed for the percutaneous suture vascular closure device. The Perclose portfolio includes all percutaneous suture closure devices. Data on file at Abbott.



optima[™] coil system optimal design, optimal detachment

Optima Coil System is manufactured by Balt USA, 29 Parker, Irvine, CA 92618. The Optima Coil System is intended for the endovascular embolization of intracranial aneurysms and other neurovascular abnormalities such as arteriovenous malformations and arteriovenous fistulae. The Optima Coil System is also intended for vascular occlusion of blood vessels within the neurovascular system to permanently obstruct blood flow to an aneurysm or other vascular malformation and for arterial and venous embolizations in the peripheral vasculature. The content of this document, in particular data, information, trademarks and logos are BALT S.A.S and affiliates' sole property. Consequently, all representation and/or reproduction, whether in part or in full, is forbidden and would be considered a violation of BALT S.A.S and affiliates' copyrights and other intellectual proprietary rights © 2018 BALT S.A.S and affiliates all rights reserved. This document with associated pictures are non-contractual and are solely dedicated to healthcare professionals and BALT S.A.S and affiliates' distributors. The products commercialized by BALT S.A.S and affiliates shall exclusively be used in accordance with the package inserts which have been updated and included in the boxes. Optima Coil System is Class III CE marked (DQS CE0297) according to the Medical Device Directive 93/42/EEC Annex II Section 4 since July 2017 (535003 W). (05/2018).

New LEVOTENSION 2.5mg, 5mg

Strong Efficacy Proven Safety

S-Amlodipine Besylate 2.5mg, 5mg

- ✓ 5mg으로 더욱 강력해진 혈압강하효과
- ✓ 약물 수용체 선택적 반응
- ✓ 부종 개선율(98.7%), 낮은 부작용 발현율(1.6%)
- ✔ 약동학적 상호 작용 감소

SmofKabiven® Fish oil을 함유한 original 3CB

▼ QR코드 스캔하여 바로 연결

- Fish oil 함유 지방유제 SMOFlipid® 함유
- Cholestasis 위험을 감소시키는 타우린 함유 1
- 권장되는 포도당-지방 비율에 따른 에너지 제공²
- 안전성과 안정성이 최적화 된 백과 포트 디자인

To learn more please visit: http://www.fresenius-kabi.co.kr

1. González-Contreras J. et al. NutrHosp . 2012;27(6):1900-7 2. Braga M et al., Clinical Nutrition 2009;28:378-386

[원료약품 및 분량]

Tachosil contains per (1 cm²)

· Collagen (sponge) ·····	2.1 mg
· Human Fibrinogen ·····	5.5 mg
· Human Thrombin ·····	2.0 IL
· Riboflavin ·····	18.2 <i>µ</i> n

[성상]

한면에 황색 약물이 도포된 백색 스폰지

[표능 및 효과]

- 1. 기존 치료법으로 조절할 수없는 경우 또는 기존 치료법으로 불충분하다고 예상되는 경우의 출혈 또는 담즙, 림프, 액, 공기 누출
- 2. 간, 비장, 췌장, 신장, 폐, 부신, 갑상선, 림프절과 같은 실질적 기관 수술시의 지혈 및 조직접착, 또한 이비인후과, 부인과, 비뇨기과, 혈관계, 뼈(예를 들면 해면골)수술, 외상관련 수술시의 지혈
- 3. 림프, 담즙, 액의 누공의 예방적 처치
- 4. 폐수술시 일어나는 공기누출의 봉합

[포장단위]

(9.5X4.8X0.5)cm² X 1대 (4.8X4.8X0.5)cm² X 2대 (2.5X3.0X0.5)cm² X 1대

심/뇌/말초혈관 질환 예방의 혈액점도 검사

HEMOVISTER®

스캐닝 모세관법

3S Product

 Speed
 3ml 혈액을 이용하여 5분내 결과 확인

 Safety
 1회용 소모품 방식으로 감염의 위험성 없음

Simple 소형화, 경량화로 사용이 편리함

More convenient!

More safe!

More cost-effective!

Orfil® injectable solution 1.5/3.0mL

Why Orfil® injectable solution?

- 주성분인 Sodium valproate가 균일하게 용해된 용액의 형태로 공급됩니다.
- 응급상황의 경련환자에게 정확하고 신속하게 투여할 수 있습니다.
- 보다 경제적으로 투여할 수 있습니다.
- Phenytoin 주사와 동등하게 경련을 억제하는 동시에 내약성은 더 우수합니다.
- 가장 많이 선택되는 valproate 주사제 입니다.

